Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Bio-mediated synthesis of nanoparticles: A new paradigm for environmental sustainability

DOI
https://doi.org/10.14719/pst.5192
Submitted
21 September 2024
Published
27-01-2025

Abstract

The synthesis of nanoscale metals and non-metals is an intriguing subject, and the green synthesis of nanoparticles (NPs) is increasingly utilized across various sectors, including environmental science, agriculture, engineering, and food processing. Traditionally, the production of nanoscale materials relies heavily on physical and chemical processes, which can lead to significant challenges such as high energy consumption and environmental contamination. Poor management of agricultural and industrial waste contributes to greenhouse gas emissions, exacerbates climate change and disrupts ecosystems. Conversely, green nanotechnology offers a safer alternative by leveraging biological materials, that inherently provide capping and reducing agents. This approach is not only more cost-effective but also results in lower pollution levels, thereby enhancing environmental safety. Green synthesis involves the reduction of metallic and non-metallic atoms using plant extracts, microorganisms, and agricultural waste instead of conventional harmful substances. The bioactive compounds, including flavonoids, alkaloids, tannins, and saponins, play a critical role in the bioreduction of metals and the production of nanoparticles. There has been the increasing interest in utilizing these biological sources for green nanoparticle production over the past decade from their potential to serve as economical and environmentally friendly alternatives. Overall, green nanotechnology demonstrates its potential to revolutionize industries and pave the way for a more sustainable and resilient future.

References

  1. R, Mendiratta S, Kumar L, Srivastava A. Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin basic dye. Curr Res Green Sustain Chem. 2021;4:100086. https://doi.org/10.1016/j.crgsc.2021.100086
  2. Deshmukh AP, Vasaikar SV, Tomczak K, Tripathi S, Den Hollander P, Arslan E, et al. Identification of EMT signaling crosstalk and gene regulatory networks by single-cell RNA sequencing. Proc Natl Acad Sci. 2021;118(19):e2102050118. https://doi.org/10.1073/pnas.2102050118
  3. Xu P, Dai W, Shi W, Xing G, Wang Z, Wang S, et al. Tebuconazoleloaded mesoporous silica nanoparticles encapsulated with chitosan and their application in wheat growth. ACS Agric Sci Technol. 2023;3(6):552-61. https://doi.org/10.1021/acsagscitech.3c00104
  4. Elemike EE, Ekennia AC, Onwudiwe DC, Ezeani RO. Agro-waste materials: Sustainable substrates in nanotechnology. In: Agriwaste and microbes for production of sustainable nanomaterials. Elsevier. 2022;187-214. https://doi.org/10.1016/B978-0-12-823575-1.00022-6
  5. Jovanov D, Vuji? B, Vuji? G. Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills. J Environ Manage. 2018;216:32-40. https://doi.org/10.1016/j.jenvman.2017.08.039
  6. Bishnoi A, Jangir P, Shekhawat PK, Ram H, Soni P. Silicon supplementation as a promising approach to induce thermotolerance in plants: current understanding and future perspectives. J Soil Sci Plant Nutr. 2023;23(1):34-55. https://doi.org/10.1007/s42729-022-00914-9
  7. Ramesh S, Radhakrishnan P. Areca nut fiber nano crystals, clay nano particles and PVA blended bionanocomposite material for active packaging of food. Appl Nanosci. 2022;12(3):295-307. https://doi.org/10.1007/s13204-020-01617-2
  8. Rashwan BR, Abd Elhamed RS, Albakry AF. Effect of zinc oxide nanoparticles on growth, chemical composition and yield of potato (Solanum tuberosum L.). J Soil Sci Agric Eng. 2023;14(3):65-71. https://dx.doi.org/10.21608/jssae.2023.182582.1126
  9. Osman AI, Zhang Y, Farghali M, Rashwan AK, Eltaweil AS, Abd ElMonaem EM, et al. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural and food applications: A review. Environ Chem Lett. 2024;22(2):841-87. https://doi.org/10.1007/s10311-023-01682-3
  10. Chan YB, Aminuzzaman M, Rahman MK, Win YF, Sultana S, Cheah SY, et al. Green synthesis of ZnO nanoparticles using the mangosteen (Garcinia mangostana L.) leaf extract: Comparative preliminary in vitro antibacterial study. Green Process Synth. 2024;13(1):20230251. https://doi.org/10.1515/gps-2023-0251
  11. Jin Z, Dridi N, Palui G, Palomo V, Jokerst JV, Dawson PE, et al. Evaluating the catalytic efficiency of the human membranetype 1 matrix metalloproteinase (MMP-14) using AuNP–peptide conjugates. J Am Chem Soc. 2023;145(8):4570-82. https://doi.org/10.1021/jacs.2c12032
  12. Hassanisaadi M, Bonjar AHS, Rahdar A, Varma RS, Ajalli N, Pandey S. Eco-friendly biosynthesis of silver nanoparticles using Aloysia citrodora leaf extract and evaluations of their bioactivities. Mater Today Commun. 2022;33:104183. https://doi.org/10.1016/j.mtcomm.2022.104183
  13. Singh P, Mijakovic I. Rowan berries: a potential source for green synthesis of extremely monodisperse gold and silver nanoparticles and their antimicrobial property. Pharmaceutics. 2021;14(1):82. https://doi.org/10.3390/pharmaceutics14010082
  14. Gericke M, Pinches A. Microbial production of gold nanoparticles. Gold Bull. 2006;39(1):22-28. https://doi.org/10.1007/BF03215529
  15. Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, et al. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanoparticle Res. 2004;6:377-82. https://doi.org/10.1007/s11051-004-0741-4
  16. Ameen F, Srinivasan P, Selvankumar T, Kamala-Kannan S, Al Nadhari S, Almansob A, et al. Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bioreductant and their broad-spectrum antibacterial activity. Bioorganic Chem. 2019;88:102970. https://doi.org/10.1016/j.bioorg.2019.102970
  17. Ali H, El-Shaikh K, Marey R, Boktor AZ. Effect of fertilization with mineral NPK and spraying with Nano NPK on growth, yield and quality of onion. J Sohag Agriscience JSAS. 2021;6(2):151-69. https://jsasj.journals.ekb.eg/article_222731_0d8d56d8be3d84387409d7914323863e.pdf
  18. Burlacu E, Tanase C, Coman NA, Berta L. A review of barkextract-mediated green synthesis of metallic nanoparticles and their applications. Molecules. 2019;24(23):4354. https://doi.org/10.3390/molecules24234354
  19. Waris M, Nasir S, Abbas S, Azeem M, Ahmad B, Khan NA, et al. Evaluation of larvicidal efficacy of Ricinus communis (Castor) and synthesized green silver nanoparticles against Aedes aegypti L. Saudi J Biol Sci. 2020;27(9):2403-09. https://doi.org/10.1016/j.sjbs.2020.04.025
  20. Zinatloo-Ajabshir S, Morassaei MS, Amiri O, Salavati-Niasari M. Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram Int. 2020;46(5):6095-107. https://doi.org/10.1016/j.ceramint.2019.11.072
  21. Patel S. Harmful and beneficial aspects of Parthenium hysterophorus: an update. 3 Biotech. 2011;1(1):1-9. https://doi.org/10.1007/s13205-011-0007-7
  22. Datta A, Patra C, Bharadwaj H, Kaur S, Dimri N, Khajuria R. Green synthesis of zinc oxide nanoparticles using Parthenium hysterophorus leaf extract and evaluation of their antibacterial properties. J Biotechnol Biomater. 2017;7(3):271-76. http://dx.doi.org/10.4172/2155-952X.1000271
  23. Boatemaa MA, Ragunathan R, Naskar J. Nanogold for in vitro inhibition of Salmonella strains. J Nanomater. 2019;2019(1):9268128. https://doi.org/10.1155/2019/9268128
  24. Acosta J, Castillo M, Hodge G. Comparison of benchtop and handheld near?infrared spectroscopy devices to determine forage nutritive value. Crop Sci. 2020;60(6):3410-22. https://doi.org/10.1002/csc2.20264
  25. Saranya S, Aswani R, Remakanthan A, Radhakrishnan E. Nanotechnology in agriculture. Nanotechnol Agric Adv Sustain Agric. 2019;1-17. http://dx.doi.org/10.1007/978-981-32-9370-0_1
  26. Omran BA, Whitehead KA, Baek KH. One-pot bioinspired synthesis of fluorescent metal chalcogenide and carbon quantum dots: Applications and potential biotoxicity. Colloids Surf B Biointerfaces. 2021;200:111578. https://doi.org/10.1016/j.colsurfb.2021.111578
  27. Kumar B, Smita K, Galeas S, Sharma V, Guerrero VH, Debut A, et al. Characterization and application of biosynthesized iron oxide nanoparticles using Citrus paradisi peel: A sustainable approach. Inorg Chem Commun. 2020;119:108116. https://doi.org/10.1016/j.inoche.2020.108116
  28. Aswin G, Bhasin A, Mazumdar A. Utilization of jackfruit byproducts and application in food industry. Pharma Innov J. 2022;11:2293-99. https://www.thepharmajournal.com/archives/2022/vol11issue7/PartAL/11-7-364-967.pdf
  29. Ashique S, Afzal O, Khalid M, Ahmad MF, Upadhyay A, Kumar S, et al. Biogenic nanoparticles from waste fruit peels: Synthesis, applications, challenges and future perspectives. Int J Pharm. 2023;643:123223. https://doi.org/10.1016/j.ijpharm.2023.123223
  30. Poongavanam SS, Subramaniyan V, Sellamuthu PS, Jarugala J, Sadiku ER. Fabrication of bio-nanocomposite packaging films with PVA, MMt clay nanoparticles, CNCs and essential oils for the postharvest preservation of sapota fruits. Polymers. 2023;15(17):3589. http://dx.doi.org/10.3390/polym15173589
  31. Patra PA, Basak UC. Physicochemical characterization of pectin extracted from six wild edible fruits in Odisha, India. Curr Res Nutr Food Sci J. 2020;8(2):402-09. http://dx.doi.org/10.12944/CRNFSJ.8.2.05
  32. Balavijayalakshmi J, Ramalakshmi V. Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. J Appl Res Technol. 2017;15(5):413-22. https://doi.org/10.1016/j.jart.2017.03.010
  33. Nath PC, Ojha A, Debnath S, Sharma M, Sridhar K, Nayak PK, et al. Biogeneration of valuable nanomaterials from agro-wastes: A comprehensive review. Agronomy. 2023;13(2):561. https://doi.org/10.3390/agronomy13020561
  34. Aydogan T, Dumanl? FT?, Derun EM. Effect of lemon peel extract concentration on nano scale Fe/Fe3O4 synthesis. Politek Derg. 2022;25(4):1423-27. https://doi.org/10.2339/politeknik.938200
  35. Vasiljevic Z, Vunduk J, Bartolic D, Miskovic G, Ognjanovic M, Tadic NB, et al. An eco-friendly approach to ZnO NP synthesis using Citrus reticulata Blanco peel/extract: characterization and antibacterial and photocatalytic activity. ACS Appl Bio Mater. 2024;7(5):3014-32. https://doi.org/10.1021/acsabm.4c00079
  36. Mishra S, Prabhakar B, Kharkar PS, Pethe AM. Banana peel waste: An emerging cellulosic material to extract nanocrystalline cellulose. ACS Omega. 2022;8(1):1140-45. https://doi.org/10.1021/acsomega.2c06571
  37. Jaithon T, Atichakaro T, Phonphoem W, Jiraroj T, Sreewongchai T, T-Thienprasert NP. Potential usage of biosynthesized zinc oxide nanoparticles from mangosteen peel ethanol extract to inhibit Xanthomonas oryzae and promote rice growth. Heliyon. 2024;10(1): e24076. https://doi.org/10.1016/j.heliyon.2024.e24076
  38. Ungureanu C, Fierascu I, Fierascu RC. Sustainable use of cruciferous wastes in nanotechnological applications. Coatings. 2022;12(6):769. https://doi.org/10.3390/coatings12060769
  39. Pradhan S, Abdelaal AH, Mroue K, Al-Ansari T, Mackey HR, McKay G. Biochar from vegetable wastes: agro-environmental characterization. Biochar. 2020;2:439-53. https://doi.org/10.1007/s42773-020-00069-9
  40. Senthilkumar A, Muthuswamy R, Nallal UM, Ramaiyan S, Kannan P, Muthupandi S, et al. Green synthesis of copper nanoparticles from agro-waste garlic husk. Z Für Phys Chem. 2024;238(1):75-88. https://doi.org/10.1515/zpch-2023-0291
  41. Bello SA, Agunsoye JO, Hassan SB. Synthesis of coconut shell nanoparticles via a top down approach: Assessment of milling duration on the particle sizes and morphologies of coconut shell nanoparticles. Mater Lett. 2015;159:514-19. https://doi.org/10.1016/j.matlet.2015.07.063
  42. Mostafa H, Airouyuwaa JO, Hamed F, Wang Y, Maqsood S. Structural, mechanical, antioxidant and antibacterial properties of soy protein isolate (SPI)-based edible food packaging films as influenced by nanocellulose (NC) and green extracted phenolic compounds from date palm leaves. Food Packag Shelf Life. 2023;38:101124. https://doi.org/10.1016/j.fpsl.2023.101124
  43. Fakhrhoseini SM, Czech B, Shirvanimoghaddam K, Naebe M. Ultrafast microwave assisted development of magnetic carbon microtube from cotton waste for wastewater treatment. Colloids Surf Physicochem Eng Asp. 2020;606:125449. https://doi.org/10.1016/j.colsurfa.2020.125449
  44. Nandiyanto ABD, Hofifah SN, Girsang GCS, Putri SR, Budiman BA, Triawan F, et al. The effects of rice husk particles size as a reinforcement component on resin-based brake pad performance: From literature review on the use of agricultural waste as a reinforcement material, chemical polymerization reaction of epoxy resin, to experiments. Automot Exp. 2021;4(2):68-82. http://dx.doi.org/10.31603/ae.4815
  45. Shand H, Mondal R, Ghorai S, Mandal AK. Maize waste utilization for nanoparticles synthesis and their various application. In: Nanomaterials from Agricultural and Horticultural Products. Springer. 2023;179-86. https://doi.org/10.1007/978-981-99-3435-5_9
  46. Krishna BV, Rao PT, Lakshmi BD, Vasudha K, Basha SE, Kumar BP, et al. Green fabrication of Tinospora cordifolia-derived MgO nanoparticles: Potential for diabatic control and oxidant protection. Mater. 2024;3:100171. https://doi.org/10.1016/j.nxmate.2024.100171
  47. Khan SA, Noreen F, Kanwal S, Iqbal A, Hussain G. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater Sci Eng C. 2018;82:46-59. https://doi.org/10.1016/j.msec.2017.08.071
  48. Mohamed AA, Abu-Elghait M, Ahmed NE, Salem SS. Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm and antifungal applications. Biol Trace Elem Res. 2021;199(7):2788-99. https://doi.org/10.1007/s12011-020-02369-4
  49. Patil MP, Kang M jae, Niyonizigiye I, Singh A, Kim JO, Seo YB, et al. Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids Surf B Biointerfaces. 2019;183:110455. https://doi.org/10.1016/j.colsurfb.2019.110455
  50. Arokiyaraj S, Saravanan M, Prakash NU, Arasu MV, Vijayakumar B, Vincent S. Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Mater Res Bull. 2013;48(9):3323-27. https://doi.org/10.1016/j.materresbull.2013.05.059
  51. Ahmed ME, Hasan HM, Kttafah AJ. Characterization and antibacterial activity of biogenic iron nanoparticles using Proteus mirabilis. Med J Babylon. 2024;21(1):39-45. 10.4103/MJBL.MJBL_27_23
  52. Mutolib BO, Richard AO, Olanike AA. Antimicrobial activity of iron oxide nanoparticles stabilized by alginate. J Appl Life Sci Int. 2021;24(11):39-46. https://doi.org/10.9734/jalsi/2021/v24i1130272
  53. Visha P, Nanjappan K, Selvaraj P, Jayachandran S, Elango A, Kumaresan G. Biosynthesis and structural characteristics of selenium nanoparticles using Lactobacillus acidophilus bacteria by wet sterilization process. Int J Adv Vet Sci Technol. 2015;4(1):178-83. http://dx.doi.org/10.23953/cloud.ijavst.183
  54. Alam H, Khatoon N, Khan MA, Husain SA, Saravanan M, Sardar M. Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. J Clust Sci. 2020;31:1003–11. https://doi.org/10.1007/s10876-019-01705-6
  55. Ameen F, AlYahya S, Govarthanan M, ALjahdali N, Al-Enazi N, Alsamhary K, et al. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J Mol Struct. 2020;1202:127233. https://doi.org/10.1016/j.molstruc.2019.127233
  56. Solís-Sandí I, Cordero-Fuentes S, Pereira-Reyes R, Vega-Baudrit JR, Batista-Menezes D, de Oca-Vásquez GM. Optimization of the biosynthesis of silver nanoparticles using bacterial extracts and their antimicrobial potential. Biotechnol Rep. 2023;40:e00816. https://doi.org/10.1016/j.btre.2023.e00816
  57. Gaber SE, Hashem AH, El-Sayyad GS, Attia MS. Antifungal activity of myco-synthesized bimetallic ZnO-CuO nanoparticles against fungal plant pathogen Fusarium oxysporum. Biomass Convers Biorefinery. 2023;14:25395-409. https://doi.org/10.1007/s13399-023-04550-w
  58. Abd El Hamid DK, Desouky EM, AbdEllatif S, Abed N, Mahfouz AY. Green synthesis and characterization of Titanium dioxide nanoparticles by Aspergillus niger DS22 and its potential application in medical fields. Egypt J Bot. 2024;64(2):629-53. https://dx.doi.org/10.21608/ejbo.2024.245157.2550
  59. Gupta K, Chundawat TS. Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from rice-straw. Biomass Bioenergy. 2020;143:105840. https://doi.org/10.1016/j.biombioe.2020.105840
  60. González-Gutiérrez KN, Ragazzo-Sánchez JA, Calderón-Santoyo M. Application of stressed and microencapsulated Meyerozyma caribbica for the control of Colletotrichum gloeosporioides in avocado (Persea americana Mill. cv. Hass). J Plant Dis Prot. 2021 Oct;128(5):1243-51. https://doi.org/10.1007/s41348-021-00487-2
  61. Vahabi K, Mansoori GA, Karimi S. Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for largescale production of AgNPs). Insciences J. 2011;1(1):65-79. http://dx.doi.org/10.5640/insc.010165
  62. Annamalai J, Nallamuthu T. Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl Nanosci. 2015;5:603-07. https://doi.org/10.1007/s13204-014-0353-y
  63. Kula-Maximenko M, Gorczyca A, Pociecha E, G?sto? A, Maciejewska-Pro?czuk J, O?wieja M. Characterization of selected parameters of Chlorella vulgaris microalgae after shortterm exposure to gold nanoparticles with different surface properties. J Environ Chem Eng. 2022;10(5):108248. https://doi.org/10.1016/j.jece.2022.108248
  64. Zhou S, Zheng Z, Mei T, Wang X. Structural design and material preparation of carbon-based electrodes for high-performance lithium storage systems. Carbon. 2019;144:127-46. https://doi.org/10.1016/j.carbon.2018.11.054
  65. Grira S, Alkhedher M, Khalifeh HA, Ramadan M, Ghazal M. Using algae in Li-ion batteries: A sustainable pathway toward greener energy storage. Bioresour Technol. 2023;394:130225. https://doi.org/10.1016/j.biortech.2023.130225
  66. Aithal PS, Aithal S. Opportunities and challenges for green and eco?Friendly nanotechnology in twenty?first century. Sustain Nanotechnol Strateg Prod Appl. 2022;31-50. http://dx.doi.org/10.1002/9781119650294.ch3
  67. Aithal P, Aithal S. Opportunities and challenges for green technology in 21st century. Int J Curr Res Mod Educ IJCRME. 2016;1(1):818-28. http://dx.doi.org/10.5281/zenodo.62020
  68. Rai P, Mehrotra S, Priya S, Gnansounou E, Sharma SK. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour Technol. 2021;325:124739. https://doi.org/10.1016/j.biortech.2021.124739
  69. Wang Y, Xia R, Hu H, Peng T. Biosynthesis, characterization and cytotoxicity of gold nanoparticles and their loading with Nacetylcarnosine for cataract treatment. J Photochem Photobiol B. 2018;187:180-83. https://doi.org/10.1016/j.jphotobiol.2018.08.014
  70. Qayyum S, Oves M, Khan AU. Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PloS One. 2017;12(8):e0181363. 10.1371/journal.pone.0181363
  71. Morales-Lozoya V, Espinoza-Gómez H, Flores-López LZ, SoteloBarrera EL, Núñez-Rivera A, Cadena-Nava RD, et al. Study of the effect of the different parts of Morinda citrifolia L.(noni) on the green synthesis of silver nanoparticles and their antibacterial activity. Appl Surf Sci. 2021;537:147855. https://doi.org/10.1016/j.apsusc.2020.147855
  72. Saravanakumar K, Chelliah R, MubarakAli D, Oh DH, Kathiresan K, Wang MH. Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori. Sci Rep. 2019;9(1):5787. https://doi.org/10.1038/s41598-019-42112-1
  73. Nilavukkarasi M, Vijayakumar S, Kumar SP. Biological synthesis and characterization of silver nanoparticles with Capparis zeylanica L. leaf extract for potent antimicrobial and anti proliferation efficiency. Mater Sci Energy Technol. 2020;3:371-76. https://doi.org/10.1016/j.mset.2020.02.008
  74. Barai AC, Paul K, Dey A, Manna S, Roy S, Bag BG, et al. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Converg. 2018;5:1-9. https://doi.org/10.1186/s40580-018-0142-5
  75. Srihasam S, Thyagarajan K, Korivi M, Lebaka VR, Mallem SPR. Phytogenic generation of NiO nanoparticles using Stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules. 2020;10(1):89. https://doi.org/10.3390/biom10010089
  76. Devanesan S, AlSalhi MS. Green synthesis of silver nanoparticles using the flower extract of Abelmoschus esculentus for cytotoxicity and antimicrobial studies. Int J Nanomedicine. 2021;16:3343-–56. https://doi.org/10.2147/ijn.s307676
  77. Gul A, Fozia, Shaheen A, Ahmad I, Khattak B, Ahmad M, et al. Green synthesis, characterization, enzyme inhibition, antimicrobial potential and cytotoxic activity of plant mediated silver nanoparticle using Ricinus communis leaf and root extracts. Biomolecules. 2021;11(2):206. 10.3390/biom11020206
  78. Cong CQ, Dat NM, Hai ND, Nam NTH, An H, Do Dat T, et al. Green synthesis of carbon-doped zinc oxide using Garcinia mangostana peel extract: characterization, photocatalytic degradation and hydrogen peroxide production. J Clean Prod. 2023;392:136269. https://doi.org/10.1016/j.jclepro.2023.136269
  79. Yap YH, Azmi AA, Mohd NK, Yong FSJ, Kan SY, Thirmizir MZA, et al. Green synthesis of silver nanoparticle using water extract of onion peel and application in the acetylation reaction. Arab J Sci Eng. 2020;45:4797-807. https://doi.org/10.1007/s13369-020-04595-3
  80. Vishwasrao C, Momin B, Ananthanarayan L. Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste Biomass Valorization. 2019;10:2353-63. https://doi.org/10.1007/s12649-018-0230-0
  81. Nabi G, Ain QU, Tahir MB, Nadeem Riaz K, Iqbal T, Rafique M, et al. Green synthesis of TiO2 nanoparticles using lemon peel extract: their optical and photocatalytic properties. Int J Environ Anal Chem. 2022;102(2):434-42. https://doi.org/10.1080/03067319.2020.1722816
  82. Saratale GD, Saratale RG, Kim DS, Kim DY, Shin HS. Exploiting fruit waste grape pomace for silver nanoparticles synthesis, assessing their antioxidant, antidiabetic potential and antibacterial activity against human pathogens: A novel approach. Nanomaterials. 2020;10(8):1457. 10.3390/nano10081457
  83. Emeka EE, Ojiefoh OC, Aleruchi C, Hassan LA, Christiana OM, Rebecca M, et al. Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus). Micron. 2014;57:1–5. https://doi.org/10.1016/j.micron.2013.09.003
  84. Hassan Basri H, Talib RA, Sukor R, Othman SH, Ariffin H. Effect of synthesis temperature on the size of ZnO nanoparticles derived from pineapple peel extract and antibacterial activity of ZnO– starch nanocomposite films. Nanomaterials. 2020;10(6):1061. https://doi.org/10.3390/nano10061061
  85. Kadam J, Dhawal P, Barve S, Kakodkar S. Green synthesis of silver nanoparticles using cauliflower waste and their multifaceted applications in photocatalytic degradation of methylene blue dye and Hg 2+ biosensing. SN Appl Sci. 2020;2:1-16. https://doi.org/10.1007/s42452-020-2543-4
  86. Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Mater Lett. 2010;64(18):1951-53. https://doi.org/10.1016/j.matlet.2010.06.021
  87. Xing Y, Liao X, Liu X, Li W, Huang R, Tang J, et al. Characterization and antimicrobial activity of silver nanoparticles synthesized with the peel extract of mango. Materials. 2021;14(19):5878. https://doi.org/10.3390/ma14195878
  88. Phang YK, Aminuzzaman M, Akhtaruzzaman Md, Muhammad G, Ogawa S, Watanabe A, et al. Green synthesis and characterization of CuO nanoparticles derived from papaya peel extract for the photocatalytic degradation of palm oil mill effluent (POME). Sustainability. 2021;13(2):796. https://doi.org/10.3390/su13020796
  89. Majeed S, Danish M, Mohamad Ibrahim MN, Sekeri SH, Ansari MT, Nanda A, et al. Bacteria mediated synthesis of iron oxide nanoparticles and their antibacterial, antioxidant, cytocompatibility properties. J Clust Sci. 2021;32:1083-94.
  90. Hulikere MM, Joshi CG. Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus-Cladosporium cladosporioides. Process Biochem. 2019;82:199–204. https://doi.org/10.1016/j.procbio.2019.04.011
  91. Wang X, Yuan L, Deng H, Zhang Z. Structural characterization and stability study of green synthesized starch stabilized silver nanoparticles loaded with isoorientin. Food Chem. 2021;338:127807. https://doi.org/10.1016/j.foodchem.2020.127807
  92. Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG. Gold nanoparticles produced in a microalga. J Nanoparticle Res. 2011;13:6439-45. https://doi.org/10.1007/s11051-011-0397-9
  93. Xia Y, Xiao Z, Dou X, Huang H, Lu X, Yan R, et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano. 2013;7(8):7083-92. https://doi.org/10.1021/nn4023894
  94. Jena J, Pradhan N, Nayak RR, Dash BP, Sukla LB, Panda PK, et al. Microalga scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol. 2014;24(4):522-33. 10.4014/jmb.1306.06014
  95. Garg R, Rani P, Garg R, Eddy NO. Study on potential applications and toxicity analysis of green synthesized nanoparticles. Turk J Chem. 2021;45(6):1690-706. https://doi.org/10.3906/kim-2106-59
  96. Goutam SP, Saxena G, Roy D, Yadav AK, Bharagava RN. Green synthesis of nanoparticles and their applications in water and wastewater treatment. Bioremediation Ind Waste Environ Saf Vol Ind Waste Its Manag. 2020;349-79. https://doi.org/10.1007/978-981-13-1891-7_16
  97. Abada E, Mashraqi A, Modafer Y, Al Abboud MA, El-Shabasy A. Review green synthesis of silver nanoparticles by using plant extracts and their antimicrobial activity. Saudi J Biol Sci. 2023;31(1):103877. https://doi.org/10.1016/j.sjbs.2023.103877
  98. Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, et al. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov. 2022;26:102336. https://doi.org/10.1016/j.eti.2022.102336

Downloads

Download data is not yet available.