Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Millet bran: The underrated ingredient with a potential to transform human nutrition

DOI
https://doi.org/10.14719/pst.5431
Submitted
1 October 2024
Published
29-12-2024 — Updated on 17-05-2025
Versions

Abstract

Millets are consumed by people across the globe. Millet bran (MB), a byproduct of preliminary processes like dehulling, debranning and milling, is often discarded or utilized as animal feed. Foxtail millet bran(FMB) consists of 9.39% crude oil, 12.48% crude protein, 51.69% crude fiber, 7.50% ash, and 8.29% moisture. Kodo millet bran
(KMB) has a nutrient profile of 4.92% protein, 79.84% carbohydrates, 2.83% fat, 48.42% overall dietary fiber, 5.33% ash and 7.07% moisture. Little millet bran has a phenolic concentration of 465.67 microgram, whole grain contains 148.53 microgram, and pearled grain has 78.63 microgram. Proso millet bran is composed of 9% fat, 26% carbohydrates, 36% dietary fiber and 14% protein, along with 3 mg gallic acid equivalent/g of phenolics. Bran is a promising ingredient for creating innovative functional and therapeutic foods since it contains good nutrients like protein, fat, dietary fiber, phenols, phytonutrients, flavonoids, and antioxidants. Hydrolytic rancidity is the primary challenge in using bran as food, and the only way to prevent it is through a process called stabilization, which inactivates the enzymes responsible for this issue. Stabilization of bran is crucial to preventing the formation of free fatty acids (FFA) due to the action of lipase. This review addresses stabilization techniques, health and therapeutic benefits and industrial applications for developing MBbased food products like bakery products, beverages and bran oil.

References

  1. 1. Thilakarathna MS, Raizada MN. A review of nutrient management studies involving finger millet in the semi-arid tropics of Asia and Africa. Agronomy. 2015;5(3):262-90. https://doi.org/10.3390/agronomy5030262
  2. 2. Sukumaran Sreekala AD, Anbukkani P, Singh A, Dayakar Rao B, Jha GK. Millet production and consumption in India: Where do we stand and where do we go? Natl Acad Sci Lett. 2023;46(1):65-70. https://doi.org/10.1007/s40009-022-01164-0
  3. 3. Anitha S, Givens DI, Subramaniam K, Upadhyay S, Kane-Potaka J, Vogtschmidt YD, et al. Can feeding a millet-based diet improve the growth of children? A systematic review and meta-analysis. Nutrients. 2022;14(1):225. https://doi.org/10.3390/nu14010225
  4. 4. Indian Institute of Millets Research (ICAR-Millets). Vision 2050 [Internet]. Indian Council of Agricultural Research; 2015. Available from: https://krishi.icar.gov.in/jspui/handle/123456789/2675
  5. 5. Directorate of Millets Development. Status paper on coarse cereals [Internet]. Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India; March 2014. Available from: https://www.nfsm.gov.in/StatusPaper/StatusMillets2016.pdf
  6. 6. Saleh ASM, Zhang Q, Chen J, Shen Q. Millet grains: Nutritional quality, processing and potential health benefits. Compr Rev Food Sci Food Saf. 2013;12(3):281-95. https://doi.org/10.1111/1541-4337.12012
  7. 7. Kalpanadevi C, Singh V, Subramanian R. Influence of milling on the nutritional composition of bran from different rice varieties. J Food Sci Technol. 2018;55:2259-69. https://doi.org/10.1007/s13197-018-3143-9
  8. 8. Patel S. Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. J Funct Foods. 2015;14:255-69. https://doi.org/10.1016/j.jff.2015.02.010
  9. 9. Onipe OO, Jideani AI, Beswa D. Composition and functionality of wheat bran and its application in some cereal food products. Int J Food Sci Technol. 2015;50(12):2509-18. https://doi.org/10.1111/ijfs.12935
  10. 10. Arendt EK, Zannini E. Cereal grains for the food and beverage industries. Woodhead Publishing Series in Food Science, Technology and Nutrition; 2013. https://doi.org/10.1533/9780857098924
  11. 11. Vashishth N, Maurya NK. Millet bran: Unveiling its potential health benefits. Int J Nutr. 2024;1(2):11-19.
  12. 12. Pawar VD, Machewad GM. Processing of foxtail millet for improved nutrient availability. J Food Process Preserv. 2006;30(3):269-79. https://doi.org/10.1111/j.1745-4549.2006.00064.x
  13. 13. Taylor JR, Emmambux MN. Gluten-free foods and beverages from millets. In: Arendt EK, Dal Bello F, editors. Gluten-free cereal products and beverages. Academic Press; 2008. p. 119-48. Available from: https://doi.org/10.1016/b978-012373739-7.50008-3
  14. 14. Dharmaraj U, Rao BS, Sakhare SD, Inamdar AA. Preparation of semolina from foxtail millet (Setaria italica) and evaluation of its quality characteristics. J Cereal Sci. 2016;68:1-7. https://doi.org/10.1016/j.jcs.2015.11.003
  15. 15. Sharma N, Niranjan K. Foxtail millet: Properties, processing, health benefits and uses. Food Rev Int. 2018;34(4):329-63. https://doi.org/10.1080/87559129.2017.1290103
  16. 16. Liang S, Yang G, Ma Y. Chemical characteristics and fatty acid profile of foxtail millet bran oil. J Am Oil Chem Soc. 2010;87(1):63-67. https://doi.org/10.1007/s11746-009-1475-3
  17. 17. Yu L, Nanguet AL, Beta T. Comparison of antioxidant properties of refined and whole wheat flour and bread. Antioxidants. 2013;2(4):370-83. https://doi.org/10.3390/antiox2040370
  18. 18. Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J Food Sci Technol. 2014;51:1021-40. https://doi.org/10.1007/s13197-011-0584-9
  19. 19. Goudar G, Sathisha GJ. Effect of processing on ferulic acid content in foxtail millet (Setaria italica) grain cultivars evaluated by HPTLC. Orient J Chem. 2016;32(4):2251-58. https://doi.org/10.13005/ojc/320458
  20. 20. Ahmad F, Pasha I, Saeed M, Asgher M. Biochemical profiling of Pakistani sorghum and millet varieties with special reference to anthocyanins and condensed tannins. Int J Food Prop. 2018;21(1):1586-97. https://doi.org/10.1080/10942912.2018.1502198
  21. 21. Bora P, Das P, Bhattacharyya R, Saikia A. Effect of processing on the phytochemical content and antioxidant capacity of proso millet (Panicum miliaceum L.) milled fractions. Int J Chem Stud. 2018;6(4):18-22.
  22. 22. McDonough CM, Rooney LW, Serna-Saldivar SO. The millets. In: Kulp K, editor. Handbook of cereal science and technology. Revised and expanded. 2nd ed. Boca Raton: CRC Press; 2000. p. 177-201.
  23. 23. Bhat BV, Hariprasanna K, Ratnavathi CV. Global and Indian scenario of millets. Indian Farming. 2023;73(1):16-18.
  24. 24. Akanbi TO, Timilsena Y, Dhital S. Bioactives from millet: Properties and effects of processing on bioavailability. In: Wang J, Sun B, Tsao R, editors. Bioactive factors and processing technology for cereal foods. Singapore: Springer; 2019. p. 171-83. https://doi.org/10.1007/978-981-13-6167-8_10
  25. 25. Taylor JR, Duodu KG. Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the health-enhancing properties of sorghum and millet food and beverage products. J Sci Food Agric. 2014;95(2):225-37. https://doi.org/10.1002/jsfa.6713
  26. 26. Dayakar Rao B, Ananthan R, Hariprasanna K, Bhatt KV, Rajeswari SS, Tonapi VA. Nutritional and health benefits of nutri cereals [Internet]. Hyderabad: Nutri Hub TBI, ICAR Indian Institute of Millets Research (IIMR); 2018. Available from: https://nutricereals.dac.gov.in/Publication/Pub_HealthyBenfits_Sep2018.pdf
  27. 27. Serna-Saldivar SO, Espinosa-Ramírez J. Grain structure and grain chemical composition. In: Taylor JR, Duodu KG, editors. Sorghum and millets: Chemistry, technology and nutritional attributes. 2nd ed. Cambridge: Woodhead Publishing, Elsevier; 2019. p. 85-129. https://doi.org/10.1016/b978-0-12-811527-5.00005-8
  28. 28. Chandi GK, Annor GA. Millet minor: Overview. In: Wrigley C, Corke H, Seetharaman K, Faubion J, editors. Encyclopedia of food grains. 2nd ed. San Diego: Academic Press; 2016. p. 199-208. https://doi.org/10.1016/b978-0-12-394437-5.00012-7
  29. 29. Gulia SK, Wilson JP, Carter J, Singh BP. Progress in grain pearl millet research and market development. In: Janick J, Whipkey A, editors. Issues in new crops and new uses. Alexandria, VA: ASHS Press; 2007. p. 196-203.
  30. 30. Tran G. Millet hulls [Internet]. Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO; 2015. Available from: https://feedipedia.org/node/15695
  31. 31. Devittori C, Gumy D, Kusy A, Colarow L, Bertoli C, Lambelet P. Supercritical fluid extraction of oil from millet bran. J Am Oil Chem Soc. 2000;77(6):573-79. https://doi.org/10.1007/s11746-000-0092-7
  32. 32. Taylor JRN, Kruger J. Millets. In: Caballero B, Finglas PM, Toldrá F, editors. Encyclopedia of food and health. Oxford: Academic Press; 2016. p. 748-57. https://doi.org/10.1016/B978-0-12-384947-2.00466-9
  33. 33. Lorenz K, Hwang YS. Lipids in proso millet (Panicum miliaceum) flours and brans. Cereal Chem. 1986;63(5):387-90.
  34. 34. Rhodes D. Diversity, genetics and health benefits of sorghum grain [dissertation on the Internet]. Columbia: University of South Carolina; 2014. Available from: https://scholarcommons.sc.edu/etd/3005
  35. 35. Devisetti R, Yadahally SN, Bhattacharya S. Nutrients and antinutrients in foxtail and proso millet milled fractions: Evaluation of their flour functionality. LWT. 2014;59(2):889-95. https://doi.org/10.1016/j.lwt.2014.07.003
  36. 36. Kumari D, Madhujith T, Chandrasekara A. Comparison of phenolic content and antioxidant activities of millet varieties grown in different locations in Sri Lanka. Food Sci Nutr. 2017;5(3):474-85. https://doi.org/10.1002/fsn3.415
  37. 37. Palaniappan A, Yuvaraj SS, Sonaimuthu S, Antony U. Characterization of xylan from rice bran and finger millet seed coat for functional food applications. J Cereal Sci. 2017;75:296-305. https://doi.org/10.1016/j.jcs.2017.03.032
  38. 38. Sharma S, Kaur S, Dar BN, Singh B. Storage stability and quality assessment of processed cereal brans. J Food Sci Technol. 2014;51:583-88. https://doi.org/10.1007/s13197-011-0537-3
  39. 39. Orthoefer FT, Eastman J. Rice bran oil. In: Shahidi F, editor. Bailey’s industrial oil and fat products. 6th ed. New York: John Wiley and Sons, Ltd; 2005. p. 465-89. https://doi.org/10.1002/047167849X.bio015
  40. 40. Tao J, Rao R, Liuzzo J. Microwave heating for rice bran stabilization. J Microw Power Electromagn Energy. 1993;28(3):156-64. https://doi.org/10.1080/08327823.1993.11688217
  41. 41. Li Y, Gao C, Wang Y, Fan M, Wang L, Qian H. Analysis of the aroma volatile compounds in different stabilized rice bran during storage. Food Chem. 2023;405:134753. https://doi.org/10.1016/j.foodchem.2022.134753
  42. 42. Patil SS, Kar A, Mohapatra D. Stabilization of rice bran using microwave: Process optimization and storage studies. Food Bioprod Process. 2016;99:204-11. https://doi.org/10.1016/j.fbp.2016.05.002
  43. 43. Lavanya MN, Saikiran KC, Venkatachalapathy N. Stabilization of rice bran milling fractions using microwave heating and its effect on storage. J Food Sci Technol. 2019;56(2):889-95. https://doi.org/10.1007/s13197-018-3550-y
  44. 44. Yilmaz N. Middle infrared stabilization of individual rice bran milling fractions. Food Chem. 2016;190:179-85. https://doi.org/10.1016/j.foodchem.2015.05.094
  45. 45. Irakli M, Kleisiaris F, Mygdalia A, Katsantonis D. Stabilization of rice bran and its effect on bioactive compounds content, antioxidant activity and storage stability during infrared radiation heating. J Cereal Sci. 2018;80:135-42. https://doi.org/10.1016/j.jcs.2018.02.005
  46. 46. Ling B, Lyng JG, Wang S. Effects of hot air-assisted radio frequency heating on enzyme inactivation, lipid stability and product quality of rice bran. LWT. 2018;91:453-59. https://doi.org/10.1016/j.lwt.2018.01.084
  47. 47. Yan W, Liu Q, Wang Y, Tao T, Liu B, Liu J, Ding C. Inhibition of lipid and aroma deterioration in rice bran by infrared heating. Food Bioproc Tech. 2020;13:1677-87. https://doi.org/10.1007/s11947-020-02503-z
  48. 48. Dhingra D, Chopra S, Rai DR. Stabilization of raw rice bran using ohmic heating. Agric Res. 2012;1:392-98. https://doi.org/10.1007/s40003-012-0037-3
  49. 49. Nazni P, Karuna TD. Development and quality evaluation of barnyard millet bran incorporated rusk and muffin. J Food Ind Microbiol. 2016;2(116):2. https://doi.org/10.4172/2572-4134.1000116
  50. 50. Akhter M, Afzal N, Haider Z, Raza MA. Inactivation of lipase enzyme by using chemicals to maximize rice bran shelf life and its edible oil recovery. J Nutr Food Sci. 2015;12:S12002. https://doi.org/10.15761/ifnm.1000123
  51. 51. Bhosale S, Vijayalakshmi D. Processing and nutritional composition of rice bran. Curr Res Nutr Food Sci. 2015;3(1):74-80. https://doi.org/10.12944/crnfsj.3.1.08
  52. 52. Lv SW, He LY, Sun LH. Effect of different stabilisation treatments on preparation and functional properties of rice bran proteins. Czech J Food Sci. 2018;36(1):57-65. https://doi.org/10.17221/100/2017-cjfs
  53. 53. Mustac NC, Novotni D, Habuš M, Drakula S, Nanjara L, Voucko B, et al. Storage stability, micronisation and application of nutrient-dense fraction of proso millet bran in gluten-free bread. J Cereal Sci. 2020;91:102864. https://doi.org/10.1016/j.jcs.2019.102864
  54. 54. Lakkakula NR, Lima M, Walker T. Rice bran stabilization and rice bran oil extraction using ohmic heating. Bioresour Technol. 2004;92(2):157-61. https://doi.org/10.1016/j.biortech.2003.08.010
  55. 55. Yu C, Hu Q, Wang H, Deng Z. Comparison of 11 rice bran stabilization methods by analyzing lipase activities. J Food Process Preserv. 2020;44(4):e14370. https://doi.org/10.1111/jfpp.14370
  56. 56. Loypimai P, Moongngarm A, Chottanom P. Impact of stabilization and extraction methods on chemical quality and bioactive compounds of rice bran oil. Emir J Food Agric. 2015;27(11):849-56. https://doi.org/10.9755/ejfa.2015.09.738
  57. 57. Rafe A, Sadeghian A, Hoseini-Yazdi SZ. Physicochemical, functional and nutritional characteristics of stabilized rice bran form tarom cultivar. Food Sci Nutr. 2017;5(3):407-14. https://doi.org/10.1002/fsn3.407
  58. 58. Food Safety and Standards Authority of India. Food Safety and Standards (Food Products Standards and Food Additives) Regulations, 2011 [Internet]. New Delhi: Food Safety and Standards Authority of India; [cited 2024 Dec 24]. Available from: https://www.fssai.gov.in/upload/uploadfiles/files/Compendium_Food_Additives_Regulations_08_09_2020-compressed.pdf
  59. 59. Zhu Y, Chu J, Lu Z, Lv F, Bie X, Zhang C, Zhao H. Physicochemical and functional properties of dietary fiber from foxtail millet (Setaria italic) bran. J Cereal Sci. 2018;79:456-61. https://doi.org/10.1016/j.jcs.2017.12.011
  60. 60. Sarma SM, Khare P, Jagtap S, Singh DP, Baboota RK, Podili K, et al. Kodo millet whole grain and bran supplementation prevents high-fat diet induced derangements in a lipid profile, inflammatory status and gut bacteria in mice. Food Funct. 2017;8(3):1174-83. https://doi.org/10.1039/c6fo01467d
  61. 61. Sridevi, Basavaraj BYN, Hanchinal RR, Basarkar PW. Antioxidant contents of whole grain cereals, millets and their milled fractions. Asian J Dairy Food Res. 2011;30(3):195-200.
  62. 62. Bisoi PC, Sahoo G, Mishra SK, Das C, Das KL. Hypoglycemic effects of insoluble fiber rich fraction of different cereals and millets. J Food Process Technol. 2012;3(11). https://doi.org/10.4172/2157-7110.1000191
  63. 63. Li M, Chang L, Ren J, Jiang F, Zhao N, Liu Y, et al. Nutritional, physical, functional properties and antioxidant potential of different colors proso millet husks and brans. LWT. 2022;171:114092. https://doi.org/10.1016/j.lwt.2022.114092
  64. 64. Sridevi. Evaluation of antioxidant properties of whole grains and processed regional cereals of Karnataka [master's dissertation on the Internet]. Dharwad: Department of Food Science and Nutrition, College of Rural Home Science, University of Agricultural Sciences; 2007. Available from: https://krishikosh.egranth.ac.in/items/6fc85766-39c3-4615-8490-cb76269c8f2a
  65. 65. Ji J, Liu Y, Ge Z, Zhang Y, Wang X. Oleochemical properties for different fractions of foxtail millet bran. J Oleo Sci. 2019;68(8):709-18. https://doi.org/10.5650/jos.ess19063
  66. 66. Le G, Amadou I, Amza T, Shi YH, Le GW. Chemical analysis and antioxidant properties of foxtail millet bran extracts. Songklanakarin J Sci Technol. 2011;33(5):509-15.
  67. 67. Barbhai MD, Hymavathi TV. Nutrient, phytonutrient and antioxidant potential of selected underutilized nutri-cereal brans. J Food Meas Charact. 2022;16(3):1952-66. https://doi.org/10.1007/s11694-022-01301-9
  68. 68. Dahlberg JA, Wilson JP, Snyder T. Sorghum and pearl millet: Health foods and industrial products in developed countries. In: Alternative uses of sorghum and pearl millet in Asia: Proceedings of an expert meeting; ICRISAT; Patancheru, Andhra Pradesh, India; 1–4 July 2003. Patancheru: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); 2004. p. 42-59.
  69. 69. Awika JM, Rooney LW, Waniska RD. Properties of 3-deoxyanthocyanins from sorghum. J Agric Food Chem. 2004;52(14):4388-94. https://doi.org/10.1021/jf049653
  70. 70. Hines LR. Development of specialty breads as nutraceutical products [master's thesis]. College Station: Texas A and M University; 2007. p. 111.
  71. 71. Espinales C, Cuesta A, Tapia J, Palacios-Ponce S, Peñas E, Martínez-Villaluenga C, et al. The effect of stabilized rice bran addition on physicochemical, sensory and techno-functional properties of bread. Foods. 2022;11(21):3328. https://doi.org/10.3390/foods11213328
  72. 72. Mrunal B. Physico- sensory quality of foxtail millet (Setaria italica) bran enriched muffins. Indian J Pure Appl Biosci. 2020;8(6):28-33. https://doi.org/10.18782/2582-2845.8438
  73. 73. Guo X, Sha X, Rahman E, Wang Y, Ji B, Wu W, Zhou F. Antioxidant capacity and amino acid profile of millet bran wine and the synergistic interaction between major polyphenols. J Food Sci Technol. 2018;55:1010-20. https://doi.org/10.1007/s13197-017-3014-9
  74. 74. Hegde PS, Rajasekaran NS, Chandra TS. Effects of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan-induced rats. J Oleo Sci. 2005;25(12):1109-20. https://doi.org/10.1016/j.nutres.2005.09.020
  75. 75. Sookwong P, Mahatheeranont S. Supercritical CO2 extraction of rice bran oil–the technology, manufacture and applications. J Oleo Sci. 2017;66(6):557-64. https://doi.org/10.5650/jos.ess17019
  76. 76. Chia SL, Boo HC, Muhamad K, Sulaiman R, Umanan F, Chong GH. Effect of subcritical carbon dioxide extraction and bran stabilization methods on rice bran oil. J Am Oil Chem Soc. 2015;92:393-402. https://doi.org/10.1007/s11746-015-2596-5
  77. 77. Lucas EW. Oilseeds and oil-bearing materials. In: Kulp K, editor. Handbook of cereal science and technology, revised and expanded. Boca Raton: CRC Press; 2000. p. 297-362.
  78. 78. Sachdev N, Goomer S, Singh LR. Foxtail millet: A potential crop to meet future demand scenario for alternative sustainable protein. J Sci Food Agric. 2021;101(3):831-42. https://doi.org/10.1002/jsfa.10716
  79. 79. Shi J, Shan S, Li H, Song G, Li Z. Anti-inflammatory effects of millet bran derived-bound polyphenols in LPS-induced HT-29 cell via ROS/miR-149/Akt/NF-kB signaling pathway. Oncotarget. 2017;8(43):74582. https://doi.org/10.18632/oncotarget.20216
  80. 80. Fraterrigo Garofalo S, Tommasi T, Fino D. A short review of green extraction technologies for rice bran oil. Biomass Convers Biorefin. 2021;11:569-87. https://doi.org/10.1007/s13399-020-00846-3
  81. 81. Patel M, Naik SN. Gamma-oryzanol from rice bran oil—A review. J Sci Ind Res. 2004;63:569-78.
  82. 82. Zhang ZS, Wang LJ, Li D, Jiao SS, Chen XD, Mao ZH. Ultrasound-assisted extraction of oil from flaxseed. Sep Purif Technol. 2008;62(1):192-98. https://doi.org/10.1016/j.seppur.2008.01.014
  83. 83. Liu SX, Mamidipally PK. Quality comparison of rice bran oil extracted with d-limonene and hexane. Cereal Chem. 2005;82(2):209-15. https://doi.org/10.1094/cc-82-0209
  84. 84. Uquiche E, Jeréz M, Ortíz J. Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol). Innov Food Sci Emerg Technol. 2008;9(4):495-500. https://doi.org/10.1016/j.ifset.2008.05.004
  85. 85. Azmir J, Zaidul IS, Rahman MM, Sharif KM, Mohamed A, Sahena F, et al. Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng. 2013;117(4):426-36. https://doi.org/10.1016/j.jfoodeng.2013.01.014
  86. 86. Jones JM, Engleson J. Whole grains: Benefits and challenges. Annu Rev Food Sci Technol. 2010;1(1):19-40. https://doi.org/10.1146/annurev.food.112408.132746
  87. 87. Dykes L, Rooney LW. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World. 2007;52(3):105-11. https://doi.org/10.1094/cfw-52-3-0105
  88. 88. De Munter JS, Hu FB, Spiegelman D, Franz M, Van Dam RM. Whole grain, bran and germ intake and risk of type 2 diabetes: A prospective cohort study and systematic review. PLoS Med. 2007;4(8):e261. https://doi.org/10.1371/journal.pmed.0040261
  89. 89. Shan S, Li Z, Newton IP, Zhao C, Li Z, Guo M. A novel protein extracted from foxtail millet bran displays anti-carcinogenic effects in human colon cancer cells. Toxicol Lett. 2014;227(2):129-38. https://doi.org/10.1016/j.toxlet.2014.03.008
  90. 90. Shan S, Li Z, Guo S, Li Z, Shi T, Shi J. A millet bran-derived peroxidase inhibits cell migration by antagonizing STAT3-mediated epithelial-mesenchymal transition in human colon cancer. J Funct Foods. 2014;10:444-55. https://doi.org/10.1016/j.jff.2014.07.005
  91. 91. Pang M, He S, Wang L, Cao X, Cao L, Jiang S. Physicochemical properties, antioxidant activities and protective effect against acute ethanol-induced hepatic injury in mice of foxtail millet (Setaria italica) bran oil. Food Funct. 2014;5(8):1763-70. https://doi.org/10.1039/c4fo00106k

Downloads

Download data is not yet available.