Diverse application and future prospects for commercial cultivation of microalgae species: A review

Authors

  • Nishesh Sharma Uttaranchal College of Applied and Life Sciences (UCALS), Uttaranchal University, Dehradun, India
  • Ajay Singh Uttaranchal College of Applied and Life Sciences (UCALS), Uttaranchal University, Dehradun, India
  • Felicia Lalremruati Uttaranchal College of Applied and Life Sciences (UCALS), Uttaranchal University, Dehradun, India
  • . Vanlalmalsawmi Uttaranchal College of Applied and Life Sciences (UCALS), Uttaranchal University, Dehradun, India
  • Rohit Sharma Uttaranchal College of Applied and Life Sciences (UCALS), Uttaranchal University, Dehradun, India

DOI:

https://doi.org/10.14719/pst.2019.6.4.581

Keywords:

algae, biofuel, bioremediation, bioplastics

Abstract

Industrial revolutions, advancements in health care, pharmaceuticals, transportation can be attributed to advancements made in the field of science and technology. Environment and natural resources has paid a heavy cost for most of industrial development. Rapid depletion of non-renewable sources of energy eventually leading towards the energy crisis, direct or indirect release of industrial effluents into soil and natural water bodies, global warming are among major consequences of industrialization. Ever since these environmental concerns have been recognized substantial studies have been conducted to minimize, control pollution and restore environment and natural resources. Among several measures cultivation of algae on large scale stands out to be a multipurpose solution. Inherent potential of microalgae species to accumulate lipids makes algae an efficient source of biofuel. Beside this ability of algae to detoxify polluted water and industrial effluent support utilization of algae for environment management and restoration. Efficient CO2 fixation, ability to tolerate wide range of environmental conditions, minimal nutritional requirements further support commercial cultivation of algal species to achieve their widespread application. However, efforts are required to develop large scale cultivation protocols (beyond the range of photobioreactors) so as to achieve practical applicability of algae and their products. Alongwith, cultivation protocols there is simultaneous need of either selection of naturally occurring high yielding strains / species or genetic improvement. Standardization of optimum cultivation conditions along with harvesting procedure is equally important.

Downloads

Download data is not yet available.

References

1. Sporaore P, Joannis CC, Duran E, Isambert A. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 2006; 101:87-96. https://doi.org/10.1263/jbb.101.87

2. Del CA, García GM, Guerrero M G. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied Microbiol Biotechnol. 2007; 74:1163-74. https://doi.org/10.1007/s00253-007-0844-9

3. Gordon and Polle. Ultrahigh bioproductivity from algae. Applied Microbiol. Biotechnol. 2007; 76: 969-75. https://doi.org/10.1007/s00253-007-1102-x

4. Carvalno AA., Silva SO, Jose MB, Malcat XF. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl. Microbio. Biotechnol. 2011; (89):1275-88. https://doi.org/10.1007/s00253-010-3047-8

5. Ibrahim M, Salman M, Kamal S, Aneeza R, Sajid R, Akash H. Production and Processing of Algal Biomass. Algae Based Polymers, Blends, and Composites. Chemistry, Biotechnology and Materials Science. 2017; 155-271. https://doi.org/10.1016/B978-0-12-812360-7.00006-9

6. Ghosh A. An approach for phycoremediation of different wastewaters and biodiesel production using microalgae. Environ. Sci. Pollut. Int. 2018; 25(19):18673-81. https://doi.org/10.1007/s11356-018-1967-5

7. Ghosh SK, Tale MP, Kapadnis BP, Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent. Bioresource Tech. 2014; 169:328-58. https://doi.org/10.1016/j.biortech.2014.06.017

8. Kumar G, Shobana S,Chen WH, Bach QV, Kim SH, Atabani AE, Chang JS. A review of thermochemical conversion of microalgal biomass for biofuels: Chemistry and process. Green Chemistry. 2014; 19(1):44-87. https://doi.org/10.1039/C6GC01937D

9. Sharma PK, Saharia M, Srivastava R, Kumar S, Sahoo L. Tailoring microalgae for efficient biofuel production. Front. Mar Sci. 2018; 5(382):1-18. https://doi.org/10.3389/fmars.2018.00382

10. Barreiro DL, Wolter P, Ronsse F, Brilman W. Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass bioener. 2013; 53(16):113-27. https://doi.org/10.1016/j.biombioe.2012.12.029

11. Dalmas NCJ, Bittencourt S, Assmann R, Coraucci D, RicardoSoccol R, Chapter 4: Production of biofuels from algal biomass by fast pyrolysis. Biofuel Algae. 2014;143-53. https://doi.org/10.1016/B978-0-444-59558-4.00007-3

12. Du, Zhen-Yi & Li, Yecong & Wang, Xiaoquan & Wan, Yiqin & Chen, Qin & Wang, Chenguang & Lin, Xiangyang & Liu, Yuhuan & Chen, Paul & Ruan, Roger. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresource technology. 2011; 102:4890-96. https://doi.org/10.1016/j.biortech.2011.01.055

13. Kapoore RV, Butler TO, Pandhal J, Vaidyanathan S. Microwave assisted extraction for microalgae:from biofuels to biorefinery. Biotech. crossmark. 2018;7(99):1-21. https://doi.org/10.3390/biology7010018

14. Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH, Microalgae-a promising tool for heavy metal remediation. Exotoxicology Env Safety. 2015; 113:329-52. https://doi.org/10.1016/j.ecoenv.2014.12.019

15. Pal D, Khozin GI, Cohen Z, Boussiba S. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol. 2011; 90(4):1429-41. https://doi.org/10.1007/s00253-011-3170-1

16. Takeshita T, Ota S, Yamazaki T, Hirata A, Zachleder V, Kawano S. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour Technol. 2014; 158:127-34. https://doi.org/10.1016/j.biortech.2014.01.135

17. Mandotra SK, Kumar P, Suseela MR, Nayaka, Ramteke PW. Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresour Technol. 2016; 201:222-29. https://doi.org/10.1016/j.biortech.2015.11.042

18. Nakajima Y, Tsuzuki M, Ueda R. Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata. J. Appl. Phycol. 2001; 13:95-101. https://doi.org/10.1023/A:1011192832502

19. Polle JEW, Kanakagiri SD, Melis A. tla, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light- harvesting chlorophyll antenna size . Planta. 2003; 217: 49-59.

20. Perrine Z, Negi S, Sayre RT. Optimization of photosynthetic light energy utilization by microalgae. Algal Research. 2012; 1: 134-42. https://doi.org/10.1016/j.algal.2012.07.002

21. Cazzaniga S, DallOsto L, Szaub J, Scibilia L, Ballottari M, Purton S, Bassi R. Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnol Biofuels. 2014; 7(1):157. https://doi.org/10.1186/s13068-014-0157-z

22. Perin G, Bellan A, Segalla A, Meneghesso A, Alboresi A, Morosinotto T. Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production. Biotechnology for Biofuels. 2015; 8:161. https://doi.org/10.1186/s13068-015-0337-5

23. Shin WS, Lee B, Jeong B, Chang YK, Kwon JH. Truncated light-harvesting chlorophyll antenna size in Chlorella vulgaris improves biomass productivity. J Appl Phycol. 2016; 28:3193-3202. https://doi.org/10.1007/s10811-016-0874-8

24. Chekroun. The role of algae in bioremediation of organic pollutants. Int. Res. J. Pub. Env. Health. 2014; 1(2):19-32.

25. Lim SL,Wan LC, Siew MP. Use of Chlorella vulgaris for bioremediation of textile wastewater. Biosource Technology. 2010; 101: 7314-22. https://doi.org/10.1016/j.biortech.2010.04.092

26. Salgueiro JL, Perez L, Maceiras R, Sanchez A, Cancela A. Bioremediation of wastewater using Chlorella vulgaris microalgae: hosphorus and rganic matter. Int. J. Environ. Res. 2016; 10:465-70.

27. Jyoti J, Awasthi M. Bioremediation of wastewater Chromium through microalgae: a review. Int. J. Eng. Res & Tech. 2014;3(6):1210-15.

28. Chalivendra S, Saikumar. Bioremediation of wastewater using microalgae (electronic thesis or dissertation). Retrieved from https://etd.ohiolink.edu/2014

29. Kshirsagar AD. Bioremediation of wastewater by using microalgae: an experimental study. Int. J. Lifesc. Bt Pharm. res. 2013; 2:339-46.

30. El-Sheekh MM, Farghl A A, Galal HR, Bayoumi HS. Bioremediation of different types of polluted water using microalgae. Rend Fis Acc Lincei 2016; 27:401. https://doi.org/10.1007/s12210-015-0495-1

31. Kumar GS, Khan SA. Bioremediation of sewage water using selective algae for manure production. Int. J. Env. Eng. Man. 2013; 4(6):573-80.

32. Kassas, Mohammed. Bioremediation of the textile waste effluent by Chlorella vulgaris. The Egyp J Aqua Res 2014; 40(3):301-08. https://doi.org/10.1016/j.ejar.2014.08.003

33. Ramirez ME, Velez L, Rendon, Alzate E. Potential of microalgae in the bioremediation of water with chloride content. Brazilian J. Biology. 2017; 78:1-5. https://doi.org/10.1590/1519-6984.169372

34. Bwapwa J, Jayeola A, Chetty R. Bioremediation of acid mine drainage using algae strains: A review. S. African J. Chem. Engineering. 2017; 24:62-70. https://doi.org/10.1016/j.sajce.2017.06.005

35. Hammud HH, Ali El-S, Essam K, El-Sayed M. Adsorption studies of Lead by Enteromorpha algae and its silicates bonded material.Advances in chemistry. 2014; Artcle ID 205459,1-11, http://dx.doi.org/10.1155/2014/205459

36. Ismail, Azza AM, Abd El-All, Han AM. Biological influence of some microorganisms on olive mill waste water. Egypt J.Agric.Res. 2013; 91:1-11.

37. Chan A, Hamidreza S, McBean. Heavy metal removal (copper and zinc)in secondary effluents from waste water treatment plants by microalgae.ACS chemistry sus. Chem. Engg. 2014; 2:130-37. https://doi.org/10.1021/sc400289z

38. Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP. Potential use of algae for heavy metal bioremediation, a critical review. J.Env.Man. 2016; 181:817-37. https://doi.org/10.1016/j.jenvman.2016.06.059

39. Sharma, Khan. Bioremediation of sewage wastewater using selective algae for manure production. Int. J. Env. Eng Manag. 2013; 4:573-80.

40. Delrue F, Pablo DAD, Sing SF, Fleury G, Sassi.JF. The environmental biorefinery: using microalgae to remediate wastewater, a win-win paradigm. Energies. 2015;9 (132):1-19. https://doi.org/10.3390/en9030132

41. Prabha Y, Soni SK, Sharmita G, Sonal. Potential of Algae in bioremediation of Wastewater: Current Research. Int. J. Curr. Microbial. App. Sci.2016; 5:693-700. https://doi.org/10.20546/ijcmas.2016.502.076

42. Shahid A, Knan AZ, Liu T, Malik S, Afzal I, Mehmood MA. Algae-based biologically active compounds. Algae based polymers, blends, and composites. Chem biotech materials Sci. 2017; 273-99. https://doi.org/10.1016/B978-0-12-812360-7.00007-0

43. Hosseini SM, Khosravi-Darani K, Mozafari MR. Nutritional and Medical Applications of Spirulina microalgae Mini-review. Med. Chem. 2013; 13:1231-37. https://doi.org/10.2174/1389557511313080009

44. Nicoletti M. Microalgae Nutraceuticals. Foods. 2016; 5(3):1-13. https://doi.org/10.3390/foods5030054

45. Sathasivam R, Radhakrishnan R, Hashem A, Allah E. Microalgae metabolites: A rich source for food and medicine. Saudi J. Bio Sci. 2017; 26:709-22. https://doi.org/10.1016/j.sjbs.2017.11.003

46. Priyadarshni, Rath B. Commercial and industrial applications of microalgae. A review. J Algal Biomass Utln. 2012; 3(4):89-100.

47. Mostafa SM Chapter 12: Microalgal Biotechnology. Plant Sci. 2012; 275-314.

48. Sigamani S, Natarajan H. A review on potential biotechnological applications of microalgae. J. App. Pharma. Sci. 2016; 6(8): 179-84. https://doi.org/10.7324/JAPS.2016.60829

49. Yamaguchi K. Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. J Appl Phycol 1996; 8(6): 487–502. https://doi.org/10.1007/BF02186327

50. Bhalamurugan GL, Valerie O Mark L. Valuable bioproducts obtained from microalgal biomass and their commercial applications. A review: Environ. Eng. Res. 2018; 23(3):229-41. https://doi.org/10.4491/eer.2017.220

51. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. Algae as nutritional and functional food sources: revisiting. J. Appl. Phycol. 2016; 29(2):949-82. https://doi.org/10.1007/s10811-016-0974-5

52. Morais MG, Stillings C, Wendorff J. Biofunctionalized Nanofibres using Arthrospira (Spirulina) Biomass and Biopolymer. Biomed. Res. Int. 2015; 1-8. http://dx.doi.org/10.1155/2015/967814

53. Swain SN, Biswal SM, Nanda PK, Nayak PL. Biodegradable soy-based plastics: opportunities and challenges. J. Polym. Environ. 2004; 12 (1): 35-42. https://doi.org/10.1023/B:JOOE.0000003126.14448.04

54. Mekonnen T, Mussone P, Khalil H, Bressler D. Progress in bio-based plastics and plasticizing modifications. J. Mater. Chem. A, 2013; 1:13379-98. https://doi.org/10.1039/c3ta12555f

55. Rajendran N, Sharanya Puppala S, Raj SM, Angeeleena RB, Rajam C. Seaweeds can be a new source for bioplastics. J. Pharm. Res. 2012; 5 (3): 1476-79.

56. Zeller MA, Hunt R, Jones A, Sharma S. Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. J. Appl. Polym. Sci. 2013; 130, 3263-75. https://doi.org/10.1002/app.39559

Downloads

Published

01-10-2019

How to Cite

1.
Sharma N, Singh A, Lalremruati F, Vanlalmalsawmi ., Sharma R. Diverse application and future prospects for commercial cultivation of microalgae species: A review. Plant Sci. Today [Internet]. 2019 Oct. 1 [cited 2024 Nov. 21];6(4):427-32. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/581

Issue

Section

Mini Reviews