Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Silicon as a key driver of phytolith and phytolith-occluded carbon sequestration for climate change mitigation in rice ecosystems - a review

DOI
https://doi.org/10.14719/pst.5815
Submitted
14 October 2024
Published
28-12-2024 — Updated on 21-02-2025
Versions

Abstract

Anthropogenic activities have increased atmospheric greenhouse gases, especially carbon dioxide, leading to global warming and climate change in recent years. Silica, a principal element in the Earth's crust, is an essential resource for plant growth and development. Silica is absorbed by plants as mono-silicic acid (H4SiO4) and deposited as opal stone/phytolith in the cellular spaces and vascular bundles of plant parts. The highest phytolith content of rice plants is observed in straw, which is incorporated into the soil during harvest and acts as a resilience material. The Lsi1 and Lsi2 transporters and significant and secondary plant nutrients underwent Polymerization with adsorbed Si to form a phytolith structure in rice. These phytoliths give structural support, function as a defence mechanism, impart biotic and abiotic stresses and reduce the toxicity of certain heavy metals and salinization of soil. Phytolith-occluded carbon (PhytOC) is formed through occlusion, contributing to the geochemical carbon cycle and climate change mitigation. Over the past 60 years, the annual carbon sequestration varied between 0.81 × 106 and 3.88 × 106 Mg-e-CO2 and a maximum of 37 × 108 Mg-e-CO2 within phytoliths in rice crops in China. Research in archaeology, palaeobotany, geology and paleoecology has focused on phytoliths because silica is a non-degradable base preserved as microfossils. Using siliconrich organic and inorganic sources enhances the Aboveground Net Primary Productivity (ANPP) and Phytolith C sequestration in the rice ecosystem.

References

  1. Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, et al. Global carbon budget 2015. Earth System Science Data. 2015;7(2):349-96. https://doi.org/10.5194/essd-7-349-2015
  2. Tang X, Zhao X, Bai Y, Tang Z, Wang W, Zhao Y, et al. Carbon pools in China's terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences. 2018;115(16):4021-26. https://doi.org/10.1073/pnas.1700291115
  3. Chen L, Smith P, Yang Y. How has soil carbon stock changed over recent decades?. Global Change Biology. 2015;21(9):3197-99.
  4. Kaczorek D, Puppe D, Busse J, Sommer M. Effects of phytolith distribution and characteristics on extractable silicon fractions in soils under different vegetation-an exploratory study on loess. Geoderma. 2019;356:113917. https://doi.org/10.1016/j.geoderma.2019.113917
  5. Parr JF, Sullivan LA. Soil carbon sequestration in phytoliths. Soil Biology and Biochemistry. 2005;37(1):117-24. https://doi.org/10.1016/j.soilbio.2004.06.013
  6. Blecker SW, McCulley RL, Chadwick OA, Kelly EF. Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochemical Cycles. 2006;20(3). https://doi.org/10.1029/2006GB002690
  7. Kameník J, Mizera J, ?anda Z. Chemical composition of plant silica phytoliths. Environmental Chemistry Letters. 2013;11:189-95.
  8. Shakoor S, Bhat M, Mir S, Soodan A. Investigations into phytoliths as diagnostic markers for the grasses (Poaceae) of Punjab. Univ J Plant Sci. 2014;2(6):107-22. https://doi.org/10.13189/ ujps.2014.020602
  9. Matoh T, Kairusmee P, Takahashi E. Salt-induced damage to rice plants and alleviation effect of silicate. Soil Science and Plant Nutrition. 1986;32(2):295-304. https://doi.org/10.1080/00380768.1986.10557506
  10. Sharma R, Gupta A, Nandan G, Dwivedi G, Kumar S. Life span and overall performance enhancement of solar photovoltaic cell using water as coolant: a recent review. Materials Today Proceedings. 2018;5(9):18202-10. https://doi.org/10.1016/j.matpr.2018.06.156
  11. Albert RM, Bamford MK, Stanistreet IG, Stollhofen H, Rivera-Rondón CA, Njau JK, Blumenschine RJ. River-fed wetland palaeovegetation and palaeoecology at the HWK W site, Bed I, Olduvai Gorge. Review of Palaeobotany and Palynology. 2018;259:223-41. https://doi.org/10.1016/j.revpalbo.2018.09.010
  12. Song Z, McGrouther K, Wang H. Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems. Earth Science Reviews. 2016;158:19-30. https://doi.org/10.1016/j.earscirev.2016.04.007
  13. Pan W, Song Z, Liu H, Van ZL, Li Y, Yang X, et al. The accumulation of phytolith-occluded carbon in soils of different grasslands. Journal of Soils and Sediments. 2017;17:2420-27. https://doi.org/10.1007/s11368-017-1690-8
  14. Nguyen AT, Nguyen MN. Straw phytolith for less hazardous open burning of paddy straw. Scientific Reports. 2019;9(1):20043. https://doi.org/10.1038/s41598-019-56735-x
  15. Tan L, Fan X, Yan G, Peng M, Zhang N, Ye M, et al. Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems. Science of the Total Environment. 2021;774:145696. https://doi.org/10.1016/j.scitotenv.2021.145696
  16. Singh P, Kumar V, Sharma J, Saini S, Sharma P, Kumar S, et al. Silicon supplementation alleviates the salinity stress in wheat plants by enhancing the plant water status, photosynthetic pigments, proline content and antioxidant enzyme activities. Plants. 2022;11(19):2525. https://doi.org/10.3390/plants11192525
  17. Sun X, Liu Q, Tang T, Chen X, Luo X. Silicon fertilizer application promotes phytolith accumulation in rice plants. Frontiers in Plant Science. 2019;10:425. https://doi.org/10.3389/fpls.2019.00425
  18. Guo F, Song Z, Sullivan L, Wang H, Liu X, Wang X, et al. Enhancing phytolith carbon sequestration in rice ecosystems through basalt powder amendment. Science Bulletin. 2015;60(6):591-97. https://doi.org/10.1007/s11434-015-0729-8
  19. Li Z, Guo F, Cornelis JT, Song Z, Wang X, Delvaux B. Combined silicon-phosphorus fertilization affects the biomass and phytolith stock of rice plants. Frontiers in Plant Science. 2020;11:67. https://doi.org/10.3389/fpls.2020.00067
  20. Song Z, Parr JF, Guo F. Potential of global cropland phytolith carbon sink from optimization of cropping system and fertilization. PLoS One. 2013;8(9):e73747. https://doi.org/10.1371/journal.pone.0073747
  21. Huang Z, Li Y, Chang SX, Jiang P, Meng C, Wu J, Zhang Y. Phytolith-occluded organic carbon in intensively managed Lei bamboo (Phyllostachys praecox) stands and implications for carbon sequestration. Canadian Journal of Forest Research. 2015;45(8):1019-25. https://doi.org/10.1139/cjfr-2014-0495
  22. Kumar V, Singh S, Kumar RM, Sharma S, Tripathi R, Nayak AK, Ladha JK. Growing Rice in eastern India: new paradigms of risk reduction and improving productivity. In: Mohanty S, et al, editors. The future rice strategy for India. Academic Press; 2017.p.221-58. https://doi.org/10.1016/B978-0-12-805374-4.00008-7
  23. Song A, Li P, Fan F, Li Z, Liang Y. The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS One. 2014;9(11):e113782. https://doi.org/10.1371/journal.pone.0113782
  24. Guan W, Ji F, Chen Q, Yan P, Zhang Q. Preparation and phosphorus recovery performance of porous calcium-silicate-hydrate. Ceramics International. 2013;39(2):1385-91. https://doi.org/10.1016/j.ceramint.2012.07.079
  25. Singh T, Singh P, Singh A. Silicon significance in crop production: special consideration to rice: an overview. Pharma Innov. 2021;10:223-29. https://doi.org/10.22271/tpi.2021.v10.i3d.5776
  26. Liang Y, Nikolic M, Bélanger R, Gong H, Song A. Silicon in agriculture: from theory to practice. Springer Science. 2015:123-42. https://doi.org/10.1007/978-94-017-9978-2
  27. Piperno DR. Paleoethnobotany in the neotropics from microfossils: new insights into ancient plant use and agricultural origins in the tropical forest. Journal of World Prehistory. 1998;12:393-449.
  28. Savant NK, Snyder GH, Datnoff LE. Silicon management and sustainable rice production. Advances in Agronomy. 1996;58:151-99. https://doi.org/10.1016/S0065-2113(08)60255-2
  29. Rastogi A, Yadav S, Hussain S, Kataria S, Hajihashemi S, Kumari P, et al. Does silicon really matter for the photosynthetic machinery in plants.?. Plant Physiology and Biochemistry. 2021;169:40-48. https://doi.org/10.1016/j.plaphy.2021.11.004
  30. Liang Y, Sun W, Zhu YG, Christie P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution. 2007;147(2):422-28. https://doi.org/10.1016/j.envpol.2006.06.008
  31. Gaur S, Kumar J, Kumar D, Chauhan DK, Prasad SM, Srivastava PK. Fascinating impact of silicon and silicon transporters in plants: a review. Ecotoxicology and Environmental Safety. 2020;202:110885. https://doi.org/10.1016/j.ecoenv.2020.110885
  32. Rao GB, Susmitha P. Silicon uptake, transportation and accumulation in rice. Journal of Pharmacognosy and Phytochemistry. 2017;6(6):290-93.
  33. Chaiwong N, Prom-U-Thai C. Significant roles of silicon for improving crop productivity and factors affecting silicon uptake and accumulation in rice: a review. Journal of Soil Science and Plant Nutrition. 2022;22(2):1970-82. https://doi.org/10.1007/s42729-022-00787-y
  34. Anala R, Nambisan P. Study of morphology and chemical composition of phytoliths on the surface of paddy straw. Springer Japan; 2015 Oct. https://doi.org/10.1007/s10333-014-0468-5
  35. Ma JF, Yamaji N. Silicon uptake and accumulation in higher plants. Trends in Plant Science. 2006;11(8):392-97.
  36. Mitani N, Ma JF, Iwashita T. Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant and Cell Physiology. 2005;46(2):279-83.
  37. Haynes RJ. The nature of biogenic Si and its potential role in Si supply in agricultural soils. Agriculture Ecosystems and Environment. 2017;245:100-11. https://doi.org/10.1016/j.agee.2017.04.021
  38. Frings PJ, Clymans W, Fontorbe G, Christina L, Conley DJ. The continental Si cycle and its impact on the ocean Si isotope budget. Chemical Geology. 2016;425:12-36.
  39. Albert RM, Shahack-Gross R, Cabanes D, Gilboa A, Lev-Yadun S, Portillo M, et al. Phytolith-rich layers from the late Bronze and Iron Ages at Tel Dor (Israel): mode of formation and archaeological significance. Journal of Archaeological Science. 2008;35(1):57-75. https://doi.org/10.1016/j.jas.2007.02.015
  40. Nguyen AT, Nguyen AM, Nguyen MT, Nguyen HT, Duong LT, Dinh VM, et al. The regulatory role of CO2 on nutrient releases from ashed rice straw phytoliths. Biogeochemistry. 2022;160(1):35-47. https://doi.org/10.1007/s10533-022-00938-4
  41. Nawaz MA, Zakharenko AM, Zemchenko IV, Haider MS, Ali MA, Imtiaz M, et al. Phytolith formation in plants: from soil to cell. Plants. 2019;8(8):249. https://doi.org/10.3390/plants8080249
  42. Li Z, Song Z, Cornelis JT. Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon. Frontiers in Plant Science. 2014;5:529. https://doi.org/10.3389/fpls.2014.00529
  43. Gu Y, Zhao Z, Pearsall DM. Phytolith morphology research on wild and domesticated rice species in East Asia. Quaternary International. 2013;287:141-48. https://doi.org/10.1016/j.quaint.2012.02.013
  44. Wüst RA, Bustin RM. Opaline and Al–Si phytoliths from a tropical mire system of West Malaysia: abundance, habit, elemental composition, preservation and significance. Chemical Geology. 2003;200(3-4):267-92. https://doi.org/10.1016/S0009-2541(03)00196-7
  45. Parr JF, Sullivan LA. Phytolith occluded carbon and silica variability in wheat cultivars. Plant and Soil. 2011;342:165-71. https://doi.org/10.1007/s11104-010-0680-z
  46. Prajapati K, Rajendiran S, Coumar V, Dotaniya ML, Kumar A, Kundu S. Carbon occlusion potential of rice phytoliths: implications for global carbon cycle and climate change mitigation. Appl Ecol Environ Res. 2016;14(2):265-81.
  47. Zimin LI, Zhaoliang SO, Peikun JI. Biogeochemical sequestration of carbon within phytoliths of wetland plants: a case study of Xixi wetland, China. Chinese Science Bulletin. 2013;58(20):2480-87. https://doi.org/10.1007/s11434-013-5785-3
  48. Wang Y, Hughes P, Niu H, Fan Y. A new method to improve the properties of recycled aggregate concrete: composite addition of basalt fiber and nano-silica. Journal of Cleaner Production. 2019;236:117602. https://doi.org/10.1016/j.jclepro.2019.07.077
  49. Wang M, Lu Y, Lalevic B. Design considerations of silicon avalanche cathodes. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures Processing Measurement and Phenomena. 1993;11(2):426-28. https://doi.org/10.1116/1.586876
  50. Cappers RT, Neef R. Handbook of plant palaeoecology. Barkhuis; 2021 Apr 28.
  51. Rehman IU, Qader W, Dar RA, Rashid I, Shah RA. Phytolith-based paleoecological reconstruction from a loess-paleosol sequence in the Kashmir Himalaya, India. Catena. 2024;245:108318.
  52. Kundu S, Rajendiran S, CoumarMV, Ajay. Effect of land use and management practices on quantifying changes of phytolith-occluded carbon in arable soils. Carbon Management in Tropical and Sub-Tropical Terrestrial Systems. 2020:37-55. https://doi.org/10.1007/978-981-13-9628-1_3
  53. Sun X, Liu Q, Zhao G, Chen X, Tang T, Xiang Y. Comparison of phytolith-occluded carbon in 51 main cultivated rice (Oryza sativa) cultivars of China. RSC Advances. 2017;7(86):54726-33. https://doi.org/10.1039/C7RA10685H
  54. Pise VH, Harlalka R, Thorat BN. Drying of aromatic plant material for natural perfumes. Boca Raton: CRC Press; 2023.
  55. Dang QT, Nguyen AT, Nguyen AD, Nguyen NT, Dam TT, Tran TT, et al. Desilification of phytolith exacerbates the release of arsenic from rice straw. Chemosphere. 2024;349:140797. https://doi.org/10.1016/j.chemosphere.2023.140797
  56. Nguyen MN, Dultz S, Guggenberger G. Effects of pretreatment and solution chemistry on solubility of rice-straw phytoliths. Journal of Plant Nutrition and Soil Science. 2014;177(3):349-59. https://doi.org/10.1002/jpln.201300056
  57. Rajendiran S, Coumar MV, Kundu S, Dotaniya AM, Rao AS. Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems. Current Science. 2012:911-20.
  58. Yuan F, Wang L, Sheng M. The application of crop phytoliths for reviewing occluded organic carbon. Chinese Journal of Eco-Agriculture. 2020;28(12):1932-40. https://doi.org/10.13930/j.cnki.cjea.200307
  59. Prajapati K, Rajendiran S, Coumar MV, Dotaniya ML, Meena VD, Srivastava A, et al. Bio-sequestration of carbon in rice phytoliths. National Academy Science Letters. 2015;38(2):129-33. https://doi.org/10.1007/s40009-014-0313-9
  60. Li Z, Song Z, Parr JF, Wang H. Occluded C in rice phytoliths: implications to biogeochemical carbon sequestration. Plant and Soil. 2013;370:615-23. https://doi.org/10.1007/s11104-013-1661-9
  61. Yang X, Song Z, Qin Z, Wu L, Yin L, Van ZL, et al. Phytolith-rich straw application and groundwater table management over 36 years affect the soil-plant silicon cycle of a paddy field. Plant and Soil. 2020;454:343-58. https://doi.org/10.1007/s11104-020-04656-4
  62. Kosten S, Roland F, Da Motta Marques DM, Van Nes EH, Mazzeo N, Sternberg LD, et al. Climate-dependent CO2 emissions from lakes. Global Biogeochemical Cycles. 2010;24(2). https://doi.org/10.1029/2009GB003618
  63. Prasad V, Stromberg CA, Alimohammadian H, Sahni A. Dinosaur coprolites and the early evolution of grasses and grazers. Science. 2005;310(5751):1177-80. https://doi.org/10.1126/science.1118806
  64. Zheng Y, Matsui A, Fujiwara H. Phytoliths of rice detected in the Neolithic sites in the Valley of the Taihu Lake in China. Environmental Archaeology. 2003;8(2):177-83. https://doi.org/10.1179/env.2003.8.2.177
  65. Zuo X, Lü H. Carbon sequestration within millet phytoliths from dry-farming of crops in China. Chinese Science Bulletin. 2011;56:3451-56. https://doi.org/10.1007/s11434-011-4674-x
  66. Zhao Y, Song Z, Xu X, Liu H, Wu X, Li Z, et al. Nitrogen application increases phytolith carbon sequestration in degraded grasslands of North China. Ecological Research. 2016;31:117-23. https://doi.org/10.1007/s11284-015-1320-0
  67. Wilding LP, Brown RE, Holowaychuk N. Accessibility and properties of occluded carbon in biogenetic opal. Soil Science. 1967;103(1):56-61.
  68. Mulholland SC, Prior C. AMS radiocarbon dating of phytoliths. MASCA Research Papers in Science and Archaeology. 1993;10:21-23.
  69. Song A, Ning D, Fan F, Li Z, Provance-Bowley M, Liang Y. The potential for carbon bio-sequestration in China's paddy rice (Oryza sativa L.) as impacted by slag-based silicate fertilizer. Scientific Reports. 2015;5(1):17354. https://doi.org/10.1038/srep17354
  70. Song Z, Liu H, Si Y, Yin Y. The production of phytoliths in China's grasslands: implications to the biogeochemical sequestration of atmospheric CO2. Global Change Biology. 2012;18(12):3647-53. https://doi.org/10.1111/gcb.12017
  71. Parr J, Sullivan L, Quirk R. Sugarcane phytoliths: encapsulation and sequestration of a long-lived carbon fraction. Sugar Tech. 2009;11:17-21. https://doi.org/10.1007/s12355-009-0003-y
  72. Parr J, Sullivan L, Chen B, Ye G, Zheng W. Carbon bio-sequestration within the phytoliths of economic bamboo species. Global Change Biology. 2010;16(10):2661-67. https://doi.org/10.1111/j.1365-2486.2009.02118.x
  73. Rashid I, Mir SH, Zurro D, Dar RA, Reshi ZA. Phytoliths as proxies of the past. Earth-Science Reviews. 2019;194:234-50. https://doi.org/10.1016/j.earscirev.2019.05.005
  74. Yang X, Song Z, Liu H, Bolan NS, Wang H, Li Z. Plant silicon content in forests of North China and its implications for phytolith carbon sequestration. Ecological Research. 2015;30:347-55. https://doi.org/10.1007/s11284-014-1228-0
  75. Yang JL, Zhang GL. Silicon cycling by plant and its effects on soil Si translocation in a typical subtropical area. Geoderma. 2018;310:89-98.
  76. Qi L, Li FY, Huang Z, Jiang P, Baoyin T, Wang H. Phytolith-occluded organic carbon as a mechanism for long-term carbon sequestration in a typical steppe: The predominant role of belowground productivity. Science of the Total Environment. 2017;577:413-17. https://doi.org/10.1016/j.scitotenv.2016.10.206
  77. Song A, Ning D, Fan F, Li Z, Provance-Bowley M, Liang Y. The potential for carbon bio-sequestration in China's paddy rice (Oryza sativa L.) as impacted by slag-based silicate fertilizer. Scientific Reports. 2015;5(1):17354. https://doi.org/10.1038/srep17354
  78. Kovács S, Kutasy E, Csajbók J. The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants. 2022;11(9):1223. https://doi.org/10.3390/plants11091223
  79. You H, Zheng L, You W, Tan F, Wang F, Cao Y, et al. The influence of exogenous nitrogen input on the characteristics of phytolith-occluded carbon in the Kandelia obovata Soil System. Forests. 2023 ;14(11):2202. https://doi.org/10.3390/f14112202
  80. Anjum M, Nagabovanalli PB. Assessing production of phytolith and phytolith occluded carbon in aboveground biomass of intensively cultivated rice ecosystems in India. Carbon Management. 2021;12(5):509-19. https://doi.org/10.1080/17583004.2021.1978552
  81. Li Z, Delvaux B. Phytolith-rich biochar: a potential Si fertilizer in desilicated soils. GCB Bioenergy. 2019;11(11):1264-82. https://doi.org/10.1111/gcbb.12635
  82. Huang C, Wang L, Gong X, Huang Z, Zhou M, Li J, et al. Silicon fertilizer and biochar effects on plant and soil PhytOC concentration and soil PhytOC stability and fractionation in subtropical bamboo plantations. Science of the Total Environment. 2020;715:136846. https://doi.org/10.1016/j.scitotenv.2020.136846
  83. Rehman IU, Qader W, Dar RA, Rashid I, Shah RA. Phytolith based paleoecological reconstruction from a loess-paleosol sequence in the Kashmir Himalaya, India. Catena. 2024;245:108318.
  84. Ali MA, Lee CH, Lee YB, Kim PJ. Silicate fertilization in no-tillage rice farming for mitigation of methane emission and increasing rice productivity. Agriculture Ecosystems and Environment. 2009;132(1-2):16-22. https://doi.org/10.1016/j.agee.2009.02.014
  85. Hodson MJ. The relative importance of cell wall and lumen phytoliths in carbon sequestration in soil: a hypothesis. Frontiers in Earth Science. 2019;7:167. https://doi.org/10.3389/feart.2019.00167
  86. Bassham JA. The path of carbon in photosynthesis. Scientific American. 1962;206(6):88-104.
  87. Bokor B, Santos CS, Kostoláni D, Machado J, da Silva MN, Carvalho SM, et al. Mitigation of climate change and environmental hazards in plants: potential role of the beneficial metalloid silicon. Journal of Hazardous Materials. 2021;416:126193. https://doi.org/10.1016/j.jhazmat.2021.126193
  88. Hussain S, Peng S, Fahad S, Khaliq A, Huang J, Cui K, Nie L. Rice management interventions to mitigate greenhouse gas emissions: a review. Environmental Science and Pollution Research. 2015;22:3342-60. https://doi.org/10.1007/s11356-014-3760-4
  89. Benbi DK. Greenhouse gas emissions from agricultural soils: sources and mitigation potential. Journal of Crop Improvement. 2013;27(6):752-72. https://doi.org/10.1080/15427528.2013.845054
  90. Wang K, Sheng M, Wang L, He Y, Guo C. Response of soil phytolith occluded organic carbon accumulation to long-term vegetation restoration in Southwest China karst. Land Degradation and Development. 2022;33(16):3088-102. https://doi.org/10.1002/ldr.4374
  91. Zhao E, Pang Z, Li W, Tan L, Peng H, Luo J, et al. Spatial variation in stability of wheat (Triticum aestivum L.) straw phytolith-occluded carbon in China. Science of the Total Environment. 2024 ;920:170909. https://doi.org/10.1016/j.scitotenv.2024.170909
  92. Davamani V, John JE, Poornachandhra C, Gopalakrishnan B, Arulmani S, Parameswari E, et al. A critical review of climate change impacts on groundwater resources: a focus on the current status, future possibilities and role of simulation models. Atmosphere. 2024;15(1):122. https://doi.org/10.3390/atmos15010122
  93. Lv H, Yang L, Zhou J, Zhang X, Wu W, Li Y, Jiang D. Water resource synergy management in response to climate change in China: from the perspective of urban metabolism. Resources Conservation and Recycling. 2020;163:105095. https://doi.org/10.1016/j.resconrec.2020.105095

Downloads

Download data is not yet available.