Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Isolation, characterization and metabolic profiling of seed endophyte B. licheniformis against Sarocladium oryzae in rice

DOI
https://doi.org/10.14719/pst.5948
Submitted
18 October 2024
Published
30-01-2025

Abstract

Rice is a vital staple food crop widely cultivated across diverse Asian agroclimatic zones. However, in recent years, the emergence of sheath rot disease, caused by Sarocladium oryzae, has severely impacted rice yields, devastating approximately half of rice production. Traditional methods of controlling plant diseases often have harmful effects on the environment and have led to the development of pathogenic resistance to various agrochemicals. In contrast, endophytes have shown great promise in managing plant diseases while enhancing plant growth and yield. The seed-associated endophyte Bacillus lichiniformis has demonstrated remarkable efficacy, exhibiting a 76.47% inhibition rate against S. oryzae. Beyond its antibiotic properties, this endophyte also promotes biostimulant activities, including the production of indole-3-acetic acid (IAA), siderophores, and the utilization of ammonia (NH3). Additionally, the analysis of secondary metabolites using gas chromatography-mass spectrometry (GC-MS) revealed a diverse array of compounds, including 9,12-Octadecadienoic acid (Z, Z)-TMS derivatives, Elaidic acid-TMS, Bis(2-ethylhexyl) phthalate, Caproic acid-TMS, Diethyl phthalate, Ricinoleic acid-2TMS derivatives, Mandelic acid-2TMS, and others. These compounds exhibit significant antifungal, antiviral, larvicidal, and antibacterial activities against various plant pathogens, highlighting the potential of Bacillus lichiniformis as a sustainable and effective biocontrol agent in rice cultivation. This research underscores the critical role of endophytes in promoting sustainable agricultural practices, offering an environmentally friendly alternative to chemical control methods while effectively combating emerging plant diseases.

References

  1. Wang W, Zhai Y, Cao L, Tan H, Zhang R. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol Res. 2016;188-189:1-8. https://doi.org/10.1016/j.micres.2016.04.009
  2. Mew TW, Leung H, Savary S, Vera Cruz CM, Leach JE. Looking ahead in rice disease research and management. Crit Rev Plant Sci. 2004;23(2):103-27. https://doi.org/10.1080/07352680490433231
  3. Anami BS, Malvade NN, Palaiah S. Classification of yield affecting biotic and abiotic paddy crop stresses using field images. Inf Process Agric. 2020;7(2):272-85. https://doi.org/10.1016/j.inpa.2019.08.005
  4. Mew TW, Gonzales P. A handbook of rice seedborne fungi. Los Baños (Philippines): International Rice Research Institute; Enfield, NH (USA): Science Publishers, Inc.; 2002.
  5. Amin KS, Sharma BD, Das CR. Occurrence in India of sheath-rot of rice caused by Acrocylindrium. Plant Dis Rep. 1974;58(1-6):358.
  6. Peeters KJ, Haeck A, Harinck L, Afolabi OO, Demeestere K, Audenaert K, et al. Morphological, pathogenic and toxigenic variability in the rice sheath rot pathogen Sarocladium oryzae. Toxins. 2020;12(2):109. https://doi.org/10.3390/toxins12020109
  7. Sakthivel N. Sheath rot disease of rice: Current status and control strategies. In: Sreenivasaprasad S, Johnson R, editors. Major fungal diseases of rice. Dordrecht: Springer; 2001. p. 271-83. https://doi.org/10.1007/978-94-017-2157-8_19
  8. Pramunadipta S, Widiastuti A, Wibowo A, Suga H, Priyatmojo A. Sarocladium oryzae associated with sheath rot disease of rice in Indonesia. Biodiversitas. 2020;21(3):1243-49. https://doi.org/10.13057/biodiv/d210352
  9. Afifah K, Wiyono S, Yuliani TS, Wibowo BSJ. History of sheath rot disease in Indonesia and disease severity in two rice production centres of West Java. J Perlindungan Tanaman Indones. 2020;24(2):201-08. https://doi.org/10.22146/jpti.47665
  10. Muralidharan K, Rao GV. Outbreak of sheath rot on rice. Int Rice Res New. 1980;5:7.
  11. Jamali H, Sharma A, Roohi, Srivastava AK. Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani. J Basic Microbiol. 2020;60(3):268-80. https://doi.org/10.1002/jobm.201900347
  12. Mano H, Morisaki H. Endophytic bacteria in the rice plant. Microbes Environ. 2008;23(2):109-17. https://doi.org/10.1264/jsme2.23.109
  13. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J. Phytoremediation: Plant–endophyte partnerships take the challenge. Curr Opin Biotechnol. 2009;20(2):248-54. https://doi.org/10.1016/j.copbio.2009.02.012
  14. Sirivella N, Gopalakrishnan C, Kannan R, Pushpam R, Uma D, Raveendran M. Analysis of bioactive secondary metabolites produced by endophytic Bacillus amyloliquefaciens against rice sheath blight pathogen Rhizoctonia solani. Agric Sci Dig. 2024. https://doi.org/10.18805/ag.D-5984
  15. Saravanakumar D, Lavanya N, Muthumeena K, Raguchander T, Samiyappan R. Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. Biocontrol. 2009;54:273-86. https://doi.org/10.1007/s10526-008-9166-9
  16. Tawde Y, Das S, Gupta A, Sharma S, Basak S, Shrimali T, et al. Development of single tube real time PCR assay for the rapid detection of Aspergillus and Fusarium: The two most common causative agents in fungal keratitis. Mycoses. 2023;66(9):801-09. https://doi.org/10.1111/myc.13618
  17. Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato Y-I, Morisaki H, et al. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. J Soil Sci Plant Nutr. 2000;46(3):617-29. https://doi.org/10.1080/00380768.2000.10409127
  18. Dennis C, Webster J. Antagonistic properties of species-groups of Trichoderma. II. Production of volatile antibiotics. Trans Br Mycol Soc. 1971;57(1):41-48,IN4. https://doi.org/10.1016/S0007-1536(71)80078-5
  19. Aneja K. Experiments in microbiology, plant pathology and biotechnology. New Age International. 2007.
  20. Bahmani K, Hasanzadeh N, Harighi B, Marefat AJP. Isolation and identification of endophytic bacteria from potato tissues and their effects as biological control agents against bacterial wilt. Physiol Mol Plant Pathol. 2021;116:101692. https://doi.org/10.1016/j.pmpp.2021.101692
  21. Hankin L, Anagnostakis SL. The use of solid media for detection of enzyme production by fungi. Mycologia. 1975;67(3):597-607. https://doi.org/10.1080/00275514.1975.12019782
  22. Siva M, Sreeja SJ, Thara SS, Heera G, Anith KN. Screening and evaluation of bacterial endophytes of cowpea [Vigna unguiculata (L.) Walp.] for plant growth promotion and biocontrol potential. Plant Sci Today. 2024;11(2):44-57. https://doi.org/10.14719/pst.2600
  23. Elgazzar R. Screening of siderophore producers from soil [Honours thesis]. Johnson City (TN): East Tennessee State University; 2017. Paper 379.
  24. de O Nunes PS, De Medeiros FH, De Oliveira TS, de Almeida Zago JR, Bettiol W. Bacillus subtilis and Bacillus licheniformis promote tomato growth. Braz J Microbiol. 2023;54(1):397-406. https://doi.org/10.1007/s42770-022-00874-3
  25. Ajilogba CF, Babalola OO. GC–MS analysis of volatile organic compounds from Bambara groundnut rhizobacteria and their antibacterial properties. World J Microbiol Biotechnol. 2019;35:83. https://doi.org/10.1007/s11274-019-2660-7
  26. Truyens S, Weyens N, Cuypers A, Vangronsveld J. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants. Environ Microbiol Rep. 2015;7(1):40-50. https://doi.org/10.1111/1758-2229.12181
  27. Muhammad M, Wahab A, Waheed A, Mohamed HI, Hakeem KR, Li L, et al. Harnessing bacterial endophytes for environmental resilience and agricultural sustainability. J Environ Manag. 2024;368:122201. https://doi.org/10.1016/j.jenvman.2024.122201
  28. Tian B, Zhang C, Ye Y, Wen J, Wu Y, Wang H, et al. Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agric Ecosyst Environ. 2017;247:149-56. https://doi.org/10.1016/j.agee.2017.06.041
  29. Jana SK, Islam MM, Mandal S. Endophytic microbiota of rice and their collective impact on host fitness. Curr Microbiol. 2022;79:37. https://doi.org/10.1007/s00284-021-02737-w
  30. Panneerselvam A, Saravanamuthu R. Antagonistic interaction of some soil fungi against Saracladium oryzae. Indian J Agric Res. 1996;30(1):59-64.
  31. Gopalakrishnan C, Valluvaparidasan V. Seed-borne biocontrol agents for the management of rice sheath rot caused by Sarocladium oryzae (Sawada) W Gams and D Hawksw. J Biol Control. 2006;20(2):197-204.
  32. Urmila V. Studies on sheath rot disease of rice caused by Sarocladium oryzae (Sawada) Gams and Hawksworth [M.Sc. (Ag.) thesis]. Guntur (India): Acharya N.G. Ranga Agricultural University; 2013.
  33. Kumar V, Jain L, Jain SK, Chaturvedi S, Kaushal P. Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S Afr J Bot. 2020;134:50-63. https://doi.org/10.1016/j.sajb.2020.02.017
  34. Aung TN, Nourmohammadi S, Sunitha EM, Myint M. Isolation of endophytic bacteria from green gram and study on their plant growth promoting activities. Intl J Appl Biol Pharmacol Tech. 2011;2:525-36.
  35. Dorra G, Ines K, Imen BS, Laurent C, Sana A, Olfa T, et al. Purification and characterization of a novel high molecular weight alkaline protease produced by an endophytic Bacillus halotolerans strain CT2. Int J Biol Macromol. 2018;111:342-51. https://doi.org/10.1016/j.ijbiomac.2018.01.024
  36. Ibrahim AS, Al-Salamah AA, El-Badawi YB, El-Tayeb MA, Antranikian G. Detergent-, solvent-and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: Purification and characterization. Extremophiles. 2015;19:961-71. https://doi.org/10.1007/s00792-015-0771-0
  37. Kabir MH, Unban K, Kodchasee P, Govindarajan RK, Lumyong S, Suwannarach N, et al. Endophytic bacteria isolated from tea leaves (Camellia sinensis var. assamica) enhanced plant-growth-promoting activity. Agriculture. 2023;13(3):533. https://doi.org/10.3390/agriculture13030533
  38. Hassan SE-D. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res. 2017;8(6):687-95. https://doi.org/10.1016/j.jare.2017.09.001
  39. Liu X, Jia J, Atkinson S, Cámara M, Gao K, Li H, et al. Biocontrol potential of an endophytic Serratia sp. G3 and its mode of action. World J Microbiol Biotechnol. 2010;26:1465-71. https://doi.org/10.1007/s11274-010-0321-y
  40. Sasirekha B, Srividya S. Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric Nat Resour. 2016;50(4):250-56. https://doi.org/10.1016/j.anres.2016.02.003
  41. Kloepper JW, Wei G, Tuzun S. Rhizosphere population dynamics and internal colonization of cucumber by plant growth-promoting rhizobacteria which induce systemic resistance to Colletotrichum orbiculare. In: Tjamos EC, Papavizas GC, Cook RJ, editors. Biological control of plant diseases. NATO ASI Series. Vol. 230. Boston (MA): Springer; 1992. p. 185-91. https://doi.org/10.1007/978-1-4757-9468-7_24
  42. Palazzini JM, Dunlap CA, Bowman MJ, Chulze SN. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiol Res. 2016;192:30-36. https://doi.org/10.1016/j.micres.2016.06.002
  43. Mardanova AM, Hadieva GF, Lutfullin MT, Khilyas IV, Minnullina LF, Gilyazeva AG, et al. Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi. Agric Sci. 2016;8(1):1-20. https://doi.org/10.4236/as.2017.81001
  44. Ntushelo K, Thibane VS, Ogugua UV, Ledwaba LK, Kalu CM. Antimicrobial secondary metabolites as antifungal agents. In: Kamel A, Abd-Elsalam KA, Alghuthaymi MA, Abdel-Momen SM, editors. Biofungicides: Eco-safety and future trends. Boca Raton (FL): CRC Press; 2023. p. 70-99. https://doi.org/10.1201/9781003452577-5
  45. Javed MR, Salman M, Tariq A, Tawab A, Zahoor MK, Naheed S, et al. The antibacterial and larvicidal potential of bis-(2-ethylhexyl) phthalate from Lactiplantibacillus plantarum. Molecules. 2022;27(21):7220. https://doi.org/10.3390/molecules27217220

Downloads

Download data is not yet available.