Exploring the potential of beta rhizobium in nitrogen fixation and agricultural sustainability

Authors

DOI:

https://doi.org/10.14719/pst.4958

Keywords:

beta-rhizobia, nodulation, phylogeny, Paraburkholderia

Abstract

Some of the earliest discovered nitrogen-fixing symbiotic prokaryotes were
the ‘Rhizobia,’ microbes that associate with legume. A relatively recent group
of nitrogen-fixing bacteria, beta-rhizobia plays a significant role in sustainable
agriculture. Detailed insights into the relationships between beta-rhizobia
and leguminous plants can be found in the phylogeny and taxonomy section
on legumes. Here, we provide a discussion of recent literature focusing on the
molecular aspects of beta-rhizobia-plant interactions, with potential
implications for enhancing nitrogen fixation beyond nodulation processes.
Furthermore, we emphasize the importance of coordinating knowledge from
other disciplines in to harness these beneficial microbes and advance
sustainable crop farming practices. In other words, this review aims to explore
the potential of beta-rhizobia and their contributions to sustainable
agriculture.

Downloads

Download data is not yet available.

References

Kebede E. Contribution, utilization and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Front Sustain Food Syst. 2021;5:767998. https://doi.org/10.3389/fsufs.2021.767998

Vance CP, Graham PH. Nitrogen fixation in agriculture: Application and perspectives. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE. (eds). Nitrogen Fixation: Fundamentals and Applications [Internet]. Dordrecht: Springer Netherlands. 1995; p. 77-86. Available from: http://link.springer.com/. https://doi.org/10.1007/978-94-011-0379-4_10

Allito BB, Nana EM, Alemneh AA. Rhizobia strain and legume genome interaction effects on nitrogen fixation and yield of grain legume: A review. Mol Soil Biol . 2015 ;6(2):1-6. https://doi.org/10.5376/msb.2015.06.0002

Kebede E. Competency of rhizobial inoculation in sustainable agricultural production and biocontrol of plant diseases. Front Sustain Food Syst. 2021;5:728014. https://doi.org/10.3389/fsufs.2021.728014

Moulin L, Munive A, Dreyfus B, Boivin-Masson C. Nodulation of legumes by members of the b-subclass of Proteobacteria. Nature. 2001;411(6840):948-50. https://doi.org/10.1038/35082070. Erratum in: Nature 2001;412(6850):926.

Goyal RK, Mattoo AK, Schmidt MA. Rhizobial–host interactions and symbiotic nitrogen fixation in legume crops toward agriculture sustainability. Front Microbiol. 2021;12:669404. https://doi.org/10.3389/fmicb.2021.669404

Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, et al. Legume-nodulating betaproteobacteria: Diversity, host range and future prospects. Mol Plant Microbe Interact. 2011;24(11):1276-88. https://doi.org/10.1094/MPMI-06-11-0172

Peter J, Young W, Haukka KE. Diversity and phylogeny of rhizobia. New Phytol. 1996;133(1):87-94. https://doi.org/10.1111/j.1469-8137.1996.tb04344.x

Willems A. The taxonomy of rhizobia: an overview. Plant Soil. 2006;287(1-2):3-14. https://doi.org/10.1007/s11104-006-9058-7

Bellés-Sancho P, Beukes C, James EK, Pessi G. Nitrogen-fixing symbiotic Paraburkholderia species: Current knowledge and future perspectives. Nitrogen. 2023 ;4(1):135-58. https://doi.org/10.3390/nitrogen4010010

Geurts R, Bisseling T. Rhizobium nod factor perception and signalling. Plant Cell. 2002 ;14 (suppl 1):S239-49. https://doi.org/10.1105/tpc.002451

Poole P, Ramachandran V, Terpolilli J. Rhizobia: from saprophytes to endosymbionts. Nat Rev Microbiol. 2018;16:291-303. https://doi.org/10.1038/nrmicro.2017.171

Checcucci A, DiCenzo GC, Bazzicalupo M, Mengoni A. Trade, diplomacy and warfare: The quest for elite rhizobia inoculant strains. Front Microbiol. 2017;8:2207. https://doi.org/10.3389/fmicb.2017.02207

Whipps JM. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot. 2001;52 (suppl 1):487-511. https://doi.org/10.1093/jexbot/52.suppl_1.487

Liu XY, Wu W, Wang ET, Zhang B, Macdermott J, Chen WX. Phylogenetic relationships and diversity of ?-rhizobia associated with Mimosa species grown in Sishuangbanna, China. Int J Syst Evol Microbiol. 2011;61(2):334-42. https://doi.org/10.1099/ijs.0.020560-0

Chen WF, Wang ET, Ji ZJ, Zhang JJ. Recent development and new insight of diversification and symbiosis specificity of legume rhizobia: mechanism and application. J Appl Microbiol. 2021;131(2):553-63. https://doi.org/10.1111/jam.14960

Graham PH, Vance CP. Legumes: Importance and constraints to greater use. Plant Physiol. 2003;131(3):872-77. https://doi.org/10.1104/pp.017004

Goyal RK, Habtewold JZ. Evaluation of legume–rhizobial symbiotic interactions beyond nitrogen fixation that help the host survival and diversification in hostile environments. Microorganisms. 2023;11(6):1454. https://doi.org/10.3390/microorganisms11061454

Zahran HH. Rhizobium - legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev. 1999;63(4):968-89. https://doi.org/10.1128/MMBR.63.4.968-989.1999

Sawada H, Kuykendall LD, Young JM. Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol. 2003;49(3):155-79. https://doi.org/10.2323/jgam.49.155

Estrada-de Los Santos P, Vinuesa P, Martínez-Aguilar L, Hirsch AM, Caballero-Mellado J. Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr Microbiol. 2013;67:51-60. https://doi.org/10.1007/s00284-013-0330-9

El-Banna N, Winkelmann G. Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol. 1998 ;85(1):69–78. https://doi.org/10.1046/j.1365-2672.1998.00473.x

AuCoin DP, Crump RB, Thorkildson P, Nuti DE, LiPuma JJ, Kozel TR. Identification of Burkholderia cepacia complex bacteria with a lipopolysaccharide-specific monoclonal antibody. J Med Microbiol. 2010 ;59(1):41-47. https://doi.org/10.1099/jmm.0.012500-0

Lindström K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol. 2020;13(5):1314-35. https://doi.org/10.1111/1751-7915.13517

Rahimlou S, Bahram M, Tedersoo L. Phylogenomics reveals the evolution of root nodulating alpha- and beta-Proteobacteria (rhizobia). Microbiol Res. 2021;250:126788. https://doi.org/10.1016/j.micres.2021.126788

Beukes CW, Boshoff FS, Phalane FL, Hassen AI, Le Roux MM, St?pkowski T, et al. Both alpha- and beta-rhizobia occupy the root nodules of Vachellia karroo in South Africa. Front Microbiol. 2019;10:1195. https://doi.org/10.3389/fmicb.2019.01195

Hassen AI, Lamprecht SC, Bopape FL. Emergence of ?-rhizobia as new root nodulating bacteria in legumes and current status of the legume–rhizobium host specificity dogma. World J Microbiol Biotechnol. 2020;36:40. https://doi.org/10.1007/s11274-020-2811-x

Rajkumari J, Katiyar P, Dheeman S, Pandey P, Maheshwari DK. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol. 2022;38:206. https://doi.org/10.1007/s11274-022-03370-w

Zhang YM, Tian CF, Sui XH, Chen WF, Chen WX. Robust markers reflecting phylogeny and taxonomy of rhizobia. Badger JH, editor. PLoS ONE. 2012;7(9):e44936. https://doi.org/10.1371/journal.pone.0044936

Koskey G, Mburu SW, Kimiti JM, Ombori O, Maingi JM, Njeru EM. Genetic characterization and diversity of Rhizobium isolated from root nodules of mid-altitude climbing bean (Phaseolus vulgaris L.) varieties. Front Microbiol. 2018;9:968. https://doi.org/10.3389/fmicb.2018.00968

Lemaire B, Van Cauwenberghe J, Verstraete B, Chimphango S, Stirton C, Honnay O, et al. Characterization of the papilionoid– Burkholderia interaction in the Fynbos biome: The diversity and distribution of beta-rhizobia nodulating Podalyria calyptrata (Fabaceae, Podalyrieae). Syst Appl Microbiol. 2016;39(1):41-48. https://doi.org/10.1016/j.syapm.2015.09.006

Liu G, Liu X, Liu W, Gao K, Chen X, Wang ET, et al. Biodiversity and geographic distribution of rhizobia nodulating with Vigna minima. Front Microbiol. 2021;12:665839. https://doi.org/10.3389/fmicb.2021.665839

Lemaire B, Dlodlo O, Chimphango S, Stirton C, Schrire B, Boatwright JS, et al. Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol Ecol. 2015;91(2):1-17. https://doi.org/10.1093/femsec/fiu024

Gerding M, O’Hara GW, Bräu L, Nandasena K, Howieson JG. Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia. Plant Soil. 2012 ;358(1-2):385-401. https://doi.org/10.1007/s11104-012-1153-3

Andrews M, De Meyer S, James EK, St?pkowski T, Hodge S, Simon MF, et al. Horizontal transfer of symbiosis genes within and between rhizobial genera: Occurrence and importance. Genes. 2018 ;9(7):321. https://doi.org/10.3390/genes9070321

Liu XY, Wei S, Wang F, James EK, Guo X, Zagar C, et al. Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in Southern China. FEMS Microbiol Ecol. 2012;80(2):417-26. https://doi.org/10.1111/j.1574-6941.2012.01310.x

Heuer H, Smalla K. Horizontal gene transfer between bacteria. Environ Biosafety Res. 2007;6(1-2):3-13. https://doi.org/10.1051/ebr:2007034

Magnus Nielsen K, Van Elsas JD. Horizontal gene transfer and microevolution in soil.In: Nielsen KM, van Elsas JD. (Eds). Modern Soil Microbiology . 3rd ed. |CRC Press. 2019 ; p. 105-23.

Vandamme P, Goris J, Chen WM, De Vos P, Willems A. Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol. 2002 ;25(4):507-12. https://doi.org/10.1078/07232020260517634

Shankar S, Haque E, Ahmed T, Kiran GS, Hassan S, Selvin J. Rhizobia–legume symbiosis during environmental stress.In: Shrivastava N, Mahajan S, Varma A. (eds).. Symbiotic Soil Microorganisms. Soil Biology, vol 60. Springer, Cham.2021;p. 201-20. https://doi.org/10.1007/978-3-030-51916-2_13,

Hawkins JP, Oresnik IJ. The Rhizobium-legume symbiosis: Co-opting successful stress management. Front Plant Sci. 2022;12:796045. https://doi.org/10.3389/fpls.2021.796045

Florentino LA, Jaramillo PMD, Silva KB, da Silva JS, de Oliveira SM, de Souza Moreira FM. Physiological and symbiotic diversity of Cupriavidus necator strains isolated from nodules of Leguminosae species. Sci Agric. 2012;69(4):247-58. https://doi.org/10.1590/S0103-90162012000400003

Chen WM, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C. Legume symbiotic nitrogen fixation by ?-proteobacteria is widespread in nature. J Bacteriol. 2003 ;185(24):7266-72. https://doi.org/10.1128/JB.185.24.7266-7272.2003

Tsyganova AV, Brewin NJ, Tsyganov VE. Structure and development of the legume-rhizobial symbiotic interface in infection threads. Cells. 2021;10(5):1050. https://doi.org/10.3390/cells10051050

Acosta-Jurado S, Fuentes-Romero F, Ruiz-Sainz JE, Janczarek M, Vinardell JM. Rhizobial exopolysaccharides: Genetic regulation of their synthesis and relevance in symbiosis with legumes. Int J Mol Sci. 2021;22(12):6233. https://doi.org/10.3390/ijms22126233

Gray JX, Rolfe BG. Exopolysaccharide production in Rhizobium and its role in invasion. Mol Microbiol. 1990;4(9):1425-31. https://doi.org/10.1111/j.1365-2958.1990.tb02052.x

Coba De La Peña T, Fedorova E, Pueyo JJ, Lucas MM. The symbiosome: Legume and rhizobia co-evolution toward a nitrogen-fixing organelle? Front Plant Sci. 2018;8:2229. https://doi.org/10.3389/fpls.2017.02229

Sprent JI, Ardley J, James EK. Biogeography of nodulated legumes and their nitrogen?fixing symbionts. New Phytol. 2017;215(1):40-56. https://doi.org/10.1111/nph.14474

Dénarié J, Debellé F, Promé JC. Rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem. 1996 ;65:503-35. https://doi.org/10.1146/annurev.bi.65.070196.002443

Geddes BA, Kearsley J, Morton R, diCenzo GC, Finan TM. The genomes of rhizobia. In: Advances in Botanical Research. Elsevier; 2020 . p. 213-49. https://doi.org/10.1016/bs.abr.2019.09.014

Spaink HP, Wijfjes AH, Lugtenberg BJ. Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides. J Bacteriol. 1995;177(21):6276-81. https://doi.org/10.1128/jb.177.21.6276-6281.1995

Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, et al. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature. 1990;344:781-84. https://doi.org/10.1038/344781a0

Lee A, Hirsch AM. Signals and responses: Choreographing the complex interaction between legumes and ?- and ?-rhizobia. Plant Signal Behav. 2006;1(4):161-68. https://doi.org/10.4161/psb.1.4.3143

Shumilina J, Soboleva A, Abakumov E, Shtark OY, Zhukov VA, Frolov A. Signaling in legume–rhizobia symbiosis. Int J Mol Sci. 2023;24(24):17397. https://doi.org/10.3390/ijms242417397

Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM. Investigations of Rhizobium biofilm formation: Rhizobia form biofilms. FEMS Microbiol Ecol. 2006;56(2):195-206. https://doi.org/10.1111/j.1574-6941.2005.00044.x

Nascimento FX, Tavares MJ, Rossi MJ, Glick BR. The modulation of leguminous plant ethylene levels by symbiotic rhizobia played a role in the evolution of the nodulation process. Heliyon. 2018;4(12):e01068. https://doi.org/10.1016/j.heliyon.2018.e01068

Shaharoona B, Imran M, Arshad M, Khalid A. Manipulation of ethylene synthesis in roots through bacterial ACC deaminase for improving nodulation in legumes. Crit Rev Plant Sci. 2011;30(3):279-91. https://doi.org/10.1080/07352689.2011.572058

Fahde S, Boughribil S, Sijilmassi B, Amri A. Rhizobia: A promising source of plant growth-promoting molecules and their non-legume interactions: Examining applications and mechanisms. Agriculture. 2023;13(7):1279. https://doi.org/10.3390/agriculture13071279

Sun W, Shahrajabian MH. The effectiveness of Rhizobium bacteria on soil fertility and sustainable crop production under cover and catch crops management and green manuring. Not Bot Horti Agrobot Cluj-Napoca. 2022;50(2):12560. https://doi.org/10.15835/nbha50212560

Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech. 2015;5:355-77. https://doi.org/10.1007/s13205-014-0241-x

Jaiswal SK, Mohammed M, Ibny FYI, Dakora FD. Rhizobia as a source of plant growth-promoting molecules: Potential applications and possible operational mechanisms. Front Sustain Food Syst. 2021;4:619676. https://doi.org/10.3389/fsufs.2020.619676

Vio SA, García SS, Casajus V, Arango JS, Galar ML, Bernabeu PR, et al. Paraburkholderia. In: Amaresan N, Senthil Kumar N, Annapurna K, Kumar K, Sankaranarayanan A. (Eds).Beneficial microbes in agro-ecology . Academi Press/ 2020; p. 271-311. https://doi.org/10.1016/B978-0-12-823414-3.00015-0

Herpell JB, Schindler F, Bejtovi? M, Fragner L, Diallo B, Bellaire A, et al. The potato yam phyllosphere ectosymbiont Paraburkholderia sp. Msb3 is a potent growth promotor in tomato. Front Microbiol. 2020;11:581. https://doi.org/10.3389/fmicb.2020.00581

Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules. 2016;21(5):573. https://doi.org/10.3390/molecules21050573

Concha C, Doerner P. The impact of the rhizobia–legume symbiosis on host root system architecture. Gutiérrez R, editor. J Exp Bot. 2020;71(13):3902-21. https://doi.org/10.1093/jxb/eraa198

Bellés-Sancho P, Liu Y, Heiniger B, Von Salis E, Eberl L, Ahrens CH, et al. A novel function of the key nitrogen-fixation activator NifA in beta-rhizobia: Repression of bacterial auxin synthesis during symbiosis. Front Plant Sci. 2022;13:991548. https://doi.org/10.3389/fpls.2022.991548

Afzal M, Khan QM, Sessitsch A. Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere. 2014;117:232-42. https://doi.org/10.1016/j.chemosphere.2014.06.078

Teng Y, Wang X, Li L, Li Z, Luo Y. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci . 2015 ;6:32. https://doi.org/10.3389/fpls.2015.00032

Keller KR, Lau JA. When mutualisms matter: Rhizobia effects on plant communities depend on host plant population and soil nitrogen availability. J Ecol. 2018;106(3):1046-56. https://doi.org/10.1111/1365-2745.12938

Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet. 2014 ;5:429 https://doi.org/10.3389/fgene.2014.00429

Howieson JG, De Meyer SE, Vivas-Marfisi A, Ratnayake S, Ardley JK, Yates RJ. Novel Burkholderia bacteria isolated from Lebeckia ambigua – A perennial suffrutescent legume of the fynbos. Soil Biol Biochem. 2013;60:55-64. https://doi.org/10.1016/j.soilbio.2013.01.009

Moulin L, Béna G, Boivin-Masson C, St?pkowski T. Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol. 2004;30(3):720-32. https://doi.org/10.1016/S1055-7903(03)00255-0

Garau G, Yates RJ, Deiana P, Howieson JG. Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem. 2009;41(1):125-34. https://doi.org/10.1016/j.soilbio.2008.10.011

Elliott GN, Chen WM, Bontemps C, Chou JH, Young JPW, Sprent JI, et al. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot. 2007;100(7):1403-11. https://doi.org/10.1093/aob/mcm227

Published

23-12-2024

How to Cite

1.
Amal S, Raghu R, Anandham R, Djanaguiraman M. Exploring the potential of beta rhizobium in nitrogen fixation and agricultural sustainability. Plant Sci. Today [Internet]. 2024 Dec. 23 [cited 2025 Jan. 7];11(sp4). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4958