Advances in coconut micropropagation: prospects, constraints and way forward

Authors

DOI:

https://doi.org/10.14719/pst.5826

Keywords:

Cocos nucifera, micropropagation, somatic embryogenesis, organogenesis

Abstract

Coconut is widely referred to as the "Tree of Life," holds immense value due to its versatility and significant role in numerous sectors including industry, agriculture, food and health. In recent years, a troubling decline in coconut production has been observed due to factors such as palm senility, pests, diseases and natural calamities which poses serious threats to industries and communities that rely highly on this crop thereby creating a gap between demand and supply. Addressing this gap requires innovative solutions and plant tissue culture techniques offer a promising path forward. Tissue culture techniques such as zygotic embryogenesis (mature embryo culture and sliced embryo culture), organogenesis (axillary bud culture and embryo derived shoot tip culture) and somatic embryogenesis have shown great potential for regenerating coconut plants. Axillary bud culture, offers a reliable alternative for producing elite plants with the added benefit of being free from the risk of somaclonal variation, while somatic embryogenesis, in particular has proven to be highly effective for producing large numbers of high-quality planting materials. However, each technique has its own share of shortcomings. Overcoming these challenges and closing the gap between demand and supply is critical for the mass production of elite coconut seedlings. This review explores the different micropropagation techniques, the hurdles facing coconut tissue culture and the potential for future breakthroughs.

Downloads

References

Adkins SW, Cave R, Beveridge FC. An introduction: botany, origin and diversity. In: Adkins SW, Biddle J, Bazrafshan A, Kalaipandian S, editors. The Coconut: Botany, Production and Uses. Wallingford, UK: CABI; 2024. p. 1-13. https://doi.org/10.1079/9781789249736.0001

Food and Agriculture Organization of the United Nations. Global coconut production statistics [Internet]. Rome: FAO; [cited 2024 Feb 1]. https://www.fao.org/faostat/en/#home

Ross I.Cocos nucifera. In: Ross I, editor. Medicinal Plants of the World. Totowa, NJ: Humana Press; 2005. p. 1-14. https://doi.org/10.1007/978-1-59259-887-8_1

Bandupriya HDD, Fernando SC, Vidhanaarachchi YRM. Micropropagation and androgenesis in coconut: an assessment of Sri Lankan implications. COCOS [Internet]. 2016 Nov 2 [cited 2024 Feb 1];22(1):31-47. https://doi.org/10.4038/cocos.v22i1.5810

Hettiarachchi HDBK, Vidhanaarachchi VRM, Jayarathna SPNC, Dinum P. Effect of exogenous polyamines on coconut (Cocos nucifera L.) embryogenic callus multiplication. COCOS [Internet]. 2022 Dec 30 [cited 2024 Jan 24];23(1):47-56. https://doi.org/10.4038/cocos.v23i1.5823

Nguyen QT, Bandupriya HD, López-Villalobos A, Sisunandar S, Foale M, Adkins SW. Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review. Planta.2015;242:1059-76. https://doi.org/10.1007/s00425-015-2352-2

Karunaratne S, Periyapperuma K. Culture of immature embryos of coconut, Cocos nucifera L: callus proliferation and somatic embryogenesis. Plant Sci. 1989;62(2):247-53. https://doi.org/10.1016/0168-9452(89)90087-3

Verdeil JL, Huet C, Grosdemange F, Buffard-Morel J. Plant regeneration from cultured immature inflorescences of coconut (Cocos nucifera L.): evidence for somatic embryogenesis. Plant Cell Rep. 1994;13(3–4):218-21. https://doi.org/10.1007/BF00239896

Rajesh MK, Fayas TP, Naganeeswaran S, Rachana KE, Bhavyashree U, Sajini KK, et al. De novo assembly and characterization of global transcriptome of coconut palm (Cocosnucifera L.) embryogenic calli using Illumina paired-end sequencing. Protoplasma. 2016 May;253(3):913-28. https://doi.org/10.1007/s00709-015-0856-8

Wilms H, De Bièvre D, Longin K, Swennen R, Rhee J, Panis B. Development of the first axillary in vitro shoot multiplication protocol for coconut palms. Sci Rep. 2021 Sep 15;11(1):18367. https://doi.org/10.1038/s41598-021-97718-1

Eeuwens CJ. Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiologia Plantarum. 1976 Jan;36(1):23-8. https://doi.org/10.1111/j.1399-3054.1976.tb05022.x

Blake J. Tissue culture propagation of coconut, date and oil palm. In: Dodds JH, editor. Tissue Culture of Trees. Boston, MA: Springer US; 1983. p. 29-50. https://doi.org/10.1007/978-1-4684-6691-1_4

Fernando SC, Santha E, Hewarathna DJA. Activated coconut shell charcoal as a component of tissue culture media of Cocos nucifera L. J Natn Sci Foundation Sri Lanka. 2010;38(3):181-5. https://doi.org/10.4038/jnsfsr.v38i3.2307

Sáenz L, Herrera-Herrera G, Uicab-Ballote F, Chan JL, Oropeza C. Influence of form of activated charcoal on embryogenic callus formation in coconut (Cocos nucifera). PCTOC. 2010;100:301-8. https://doi.org/10.1007/s11240-009-9732-0

Renuka R, Greeshma JA, Nirmala N, Meera R. Influence of growth hormones on initiation of somatic embryogenesis in coconut var. Chowghat Orange Dwarf. Int J Curr Microbiol App Sci. 2018;7(11):2645-52. https://doi.org/10.20546/ijcmas.2018.711.302

Chandrakala D, Renuka R, Sushmitha D. Influence of 2, 4-D and TDZ on direct organogenesis in coconut var. East Coast Tall. Int J Chem Stud. 2019;7:4111-5.

Rohith S, Kavibalan S. Characterization of mother palms and novel techniques to produce elite seedlings of coconut var. Chowghat Orange Dwarf. EJPB [Internet]. 2023 Oct 3 [cited 2024 Feb 4];14(3)867-875. https://doi.org/10.37992/2023.1403.112

Goldberg RB, de Paiva G, Yadegari R. Plant embryogenesis: zygote to seed. Science [Internet]. 1994 Oct 28 [cited 2024 Feb 4];266(5185):605-14. https://doi.org/10.1126/science.266.5185.605

Chen H, Miao Y, Wang K, Bayer M. Zygotic embryogenesis in flowering plants. In: Segui-Simarro JM, editor. Doubled Haploid Technology [Internet]. New York, NY: Springer US; 2021 [cited 2024 Feb 6]. p. 73-88. (Methods in Molecular Biology; vol. 2288). https://doi.org/10.1007/978-1-0716-1335-1_4

Guan Y, Li SG, Fan XF, Su ZH. Application of somatic embryogenesis in woody plants. Front Plant Sci [Internet]. 2016 Jun 24 [cited 2024 Jan 4];7. https://doi.org/10.3389/fpls.2016.00938

Karunaratne S, Kurukulaarachchi C, Gamage C. A report on the culture of embryos of dwarf coconut, Cocos nucifera L var nana in vitro. Cocos: J Coconut Res Inst Sri Lanka. 1985;3:1-8. https://doi.org/10.4038/cocos.v3i0.815

Nwite PA, Ikhajiagbe B, Owoicho I. Germination response of coconut (Cocos nucifera L.) zygotic embryo. J Appl Sci Environ Manage. 2017;21(6):1019-21. https://doi.org/10.4314/jasem.v21i6.3

Pech Aké A, Maust B, Oropeza C, Santamaria JM. The effect of gibberellic acid on the in vitro germination of coconut zygotic embryos and their conversion into plantlets. In Vitro Cell Dev Biol - Plant [Internet]. 2007 Mar 1;43(3):247-53. https://doi.org/10.1007/s11627-006-9018-1

Ashburner GR, Thompson WK, Burch JM. Effect of A-naphthaleneacetic acid and sucrose levels on the development of cultured embryos of coconut. Plant Cell Tissue Organ Cult [Internet]. 1993 Nov [cited 2024 Feb 5];35(2):157-63. https://doi.org/10.1007/BF00032965

Sugimura Y, Ceniza MS, Uedda S. In vitro culture of coconut zygotic embryos. J Trop Agric. 1994;38(1):47–50. https://doi.org/10.11248/jsta1957.38.47.

Triques K, Rival A, Beulé T, Puard M, Roy J, Nato A, Lavergne D, Havaux M, Verdeil JL, Sangaré A, Hamon S. Photosynthetic ability of in vitro grown coconut (Cocos nucifera L.) plantlets derived from zygotic embryos. Plant Sci. 1997;127:39-51. https://doi.org/10.1016/S0168-9452(97)00113-1.

Kumar SN, Rajagopal V, Karun A. Photosynthetic acclimatization in zygotic embryo cultured plantlets of coconut (Cocos nucifera L.). CORD [Internet]. 2001;17(02):34-34. https://doi.org/10.37833/cord.v17i02.352

Sisunandar, Alkhikmah, Husin A, Julianto T, Yuniaty A, Rival A, et al. Ex vitro rooting using a mini growth chamber increases root induction and accelerates acclimatization of Kopyor coconut (Cocos nucifera L.) embryo culture-derived seedlings. In Vitro Cell Dev Biol - Plant [Internet]. 2018 Oct 1;54(5):508-17. https://doi.org/10.1007/s11627-018-9897-y

Sáenz-Carbonell L, Nguyen Q, López-Villalobos A, Oropeza-Salín C. Coconut micropropagation for worldwide replanting needs. In: Adkins S, Foale M, Bourdeix R, Nguyen Q, Biddle J, editors. Coconut Biotechnology: Towards the Sustainability of the ‘Tree of Life’ [Internet]. Cham: Springer International Publishing; 2020 [cited 2024 Jan 4]. p. 227-40. https://doi.org/10.1007/978-3-030-44988-9_11

Ueda S, Ceniza MS, Sugimura Y. Proliferative responses induced from coconut embryo tissues cultured in vitro. J Trop Agric [Internet]. 1993;37(1):38-41. https://doi.org/10.11248/jsta1957.37.38

Nunez TC. Doubling macapuno seedling production through embryo splitting. Philipp J Crop Sci. 1997;22(1).

Sisunandar, Alkhikmah, Husin A, Suyadi A. Embryo incision as a new technique for double seedling production of Indonesian elite coconut type 'Kopyor'. J Math Fund Sci. 2015 Dec;47(3):252-60. https://doi.org/10.5614/j.math.fund.sci.2015.47.3.3

Sushmitha D, Renuka R, Chandrakala D. Studies on in vitro culture of coconut var. Chowghat Orange Dwarf through direct organogenesis. Int J Curr Microbiol App Sci. 2019;8(6):2391-8. https://doi.org/10.20546/ijcmas.2019.806.284

Bett CC. Direct organogenesis and callus induction of coconut from seed embryo for mass propagation [Doctoral dissertation]. JKUAT-IBR; 2021. p. 25-31.

Bhatia S, Bera T. Chapter 6 - Somatic embryogenesis and organogenesis. In: Bhatia S, Sharma K, Dahiya R, Bera T, editors. Modern Applications of Plant Biotechnology in Pharmaceutical Sciences [Internet]. Boston: Academic Press; 2015. p. 209-30. https://doi.org/10.1016/B978-0-12-802221-4.00006-6

Kong EYY, Biddle J, Foale M, Panis B, Adkins SW. The potential to propagate coconut clones through direct shoot organogenesis: A review. Scientia Horticulturae [Internet]. 2021 Nov 17;289:110400. https://doi.org/10.1016/j.scienta.2021.110400

Phillips GC, Garda M. Plant tissue culture media and practices: an overview. In Vitro Cell Dev Biol Plant. 2019;55:242-57. https://doi.org/10.1007/s11627-019-09983-5.

Pérez-Núñez MT, Chan JL, Sáenz L, et al. Improved somatic embryogenesis from Cocos nucifera (L.) plumule explants. In Vitro Cell Dev Biol:Springer - Plant. 2006;42:37-43. https://doi.org/10.1079/IVP2005722.

Naik PM, Al-Khayri JM. Somatic embryogenesis of date palm (Phoenix dactylifera L.) through cell suspension culture. Methods Mol Biol. 2016;1391:357-66. https://doi.org/10.1007/978-1-4939-3332-7_25.

Heedchim W, Te-Chato S, Yenchon S. Effect of forchlorfenuron on somatic embryo proliferation and plantlet regeneration in oil palm SUP-PSU1. Walailak J Sci & Tech [Internet]. 2021 Feb 26 [cited 2024 Dec 13];18(5):Article 11048 (9 pages). https://doi.org/10.48048/wjst.2021.11048

Yang X, Zhang X. Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci. 2010 Jan 25;29:36-57. https://doi.org/10.1080/07352680903436291.

Pais MS. Somatic embryogenesis induction in woody species: The future after OMICs data assessment. Front Plant Sci [Internet]. 2019;10(240). https://doi.org/10.3389/fpls.2019.00240

Biddle J, Nguyen Q, Mu ZH, Foale M, Adkins S. Germplasm reestablishment and seedling production: Embryo culture. In: Adkins S, Foale M, Bourdeix R, Nguyen Q, Biddle J, editors. Coconut Biotechnology: Towards the Sustainability of the ‘Tree of Life’ [Internet]. Cham: Springer International Publishing; 2020. p. 199-225.

https://doi.org/10.1007/978-3-030-44988-9_10

Khan FS, Li Z, Shi P, Zhang D, Htwe YM, Yu Q, et al. Transcriptional regulations and hormonal signaling during somatic embryogenesis in the coconut tree: An insight. Forests [Internet]. 2023 Sep 4 [cited 2024 Jan 4];14(9):1800. https://doi.org/10.3390/f14091800

Kalaipandian S, Mu Z, Kong EYY, Biddle J, Cave R, Bazrafshan A, et al. Cloning coconut via somatic embryogenesis: A review of the current status and future prospects. Plants [Internet]. 2021 Sep 29 [cited 2024 Jan 4];10(10):2050. https://doi.org/10.3390/plants10102050

Adkins SW, Samosir YMS, Nikmatullah A, Ogle H. Coconut (Cocos nucifera) in vitro ecology: modifications of headspace and medium additives can optimize somatic embryogenesis. Acta Hortic [Internet]. 2005 Oct [cited 2024 Jan 31];(692):21-32. https://doi.org/10.17660/ActaHortic.2005.692.1

Efferth T. Biotechnology applications of plant callus cultures. Eng [Internet]. 2019 Feb 1;5(1):50-9. https://doi.org/10.1016/j.eng.2018.11.006

Kong EYY, Biddle J, Kalaipandian S, Adkins SW. Coconut callus initiation for cell suspension culture. Plants [Internet]. 2023 Feb 20 [cited 2024 Jan 25];12(4):968. https://doi.org/10.3390/plants12040968

Boamponsem GA, Leung DWM. Use of compact and friable callus cultures to study adaptive morphological and biochemical responses of potato (Solanum tuberosum) to iron supply. Scientia Horticulturae [Internet]. 2017 May 17;219:161-72. https://doi.org/10.1016/j.scienta.2017.03.012

Rahman ZA, Govindasamy SK, Ngalim A, Adlan NAS, Basiron NNA, Othman AN. Callus induction of young leaf coconut cv. MATAG with combination of 2,4-dichlorophenoxyacetic acid (2,4-D), ?-naphthalene acetic acid (NAA) and benzyl amino purin (BAP). ABB [Internet]. 2022 [cited 2024 Jan 25];13(05):254-63. https://doi.org/10.4236/abb.2022.135015

Maulida D, Erfa L, Sesanti RN, Hidayat H. Induction of kopyor coconut embryogenic callus using 2.4-D and TDZ. IOP Conf Ser: Earth Environ Sci [Internet]. 2020 Jan 1 [cited 2024 Jan 31];411(1):012013. https://doi.org/10.1088/1755-1315/411/1/012013

Neema M, Hareesh GS, Aparna V, Chandran KP, Karun A. Electrical induction as stress factor for callus growth enhancement in plumular explant of coconut (Cocos nucifera L.). IJBSM [Internet]. 2022 Sep 30 [cited 2024 Jan 31];13(9):921-7. https://doi.org/10.23910/1.2022.3126

Bett CC, Mweu CM, Nyende AB. In vitro regeneration of coconut (Cocos nucifera L) through indirect somatic embryogenesis in Kenya. Afr J Biotechnol. 2019;18(32):1113-22. https://doi.org/10.5897/AJB2019.16867.

Greeshma A, Renuka R, Meera R, Nirmala N. Effect of plant growth hormones on development of embryogenic structures in somatic embryogenesis of coconut. Res J Agric Sci. 2018;9(6):1181-4.

Fernando SC, Gamage CKA. Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos nucifera L.). Plant Sci [Internet]. 2000 Feb [cited 2024 Feb 13];151(2):193-8. https://doi.org/10.1016/S0168-9452(99)00218-6

Chan JL, Saenz L, Talavera C, Hornung R, Robert M, Oropeza C. Regeneration of coconut (Cocos nucifera L.) from plumule explants through somatic embryogenesis. Plant Cell Rep. 1998;17:515-21. https://doi.org/10.1007/s002990050434.

Azpeitia A, Chan JL, Sáenz L, Oropeza C. Effect of 22(S),23(S)-homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. J Hortic Sci Biotechnol [Internet]. 2003 Jan 1;78(5):591-6. https://doi.org/10.1080/14620316.2003.11511669

Fernando SC, Weerakoon LK, Gunathilake TR. Micropropagation of coconut through plumule culture. Cocos: 2004;16():01-10. https://doi.org/10.4038/cocos.v16i0.1003

Sáenz L, Souza R, Chan JL, Azpeitia A, Oropeza C. 14C-2, 4-dichlorophenoxyacetic acid uptake and formation of embryogenic calli in coconut plumular explants cultured on activated charcoal-free media. Rev Fitotec Mex [Internet]. 2005;28(2):151. https://doi.org/10.35196/rfm.2005.2.151

Aparna V, Neema M, Chandran K, Muralikrishna K, Karun A. Enhancement of callogenesis from plumular explants of coconut (Cocos nucifera) via exogenous supplementation of amino acids and casein hydrolysate. Curr Hortic [Internet]. 2023;11(1):40-3. https://doi.org/10.5958/2455-7560.2023.00008.0

Oropeza C. Coconut micropropagation in Mexico using plumule and floral explants. CORD [Internet]. 2016;32(2):6-6. https://doi.org/10.1007/s002990050434

Perera PIP, Vidhanaarachchi VRM. Anther culture in coconut (Cocos nucifera L.). In: Segui-Simarro JM, editor. Doubled Haploid Technology: Volume 3: Emerging Tools, Cucurbits, Trees, Other Species [Internet]. New York, NY: Springer US; 2021. p. 167-78. https://doi.org/10.1007/978-1-0716-1331-3_11

Perera PIP, Hocher V, Verdeil JL, Bandupriya HDD, Yakandawala DMD, Weerakoon LK. Androgenic potential in coconut (Cocos nucifera L.). Plant Cell Tiss Organ Cult [Internet]. 2008 Mar [cited 2024 Feb 2];92(3):293-302. https://doi.org/10.1007/s11240-008-9337-5

Perera PIP, Yakandawala DMD, Hocher V, Verdeil JL, Weerakoon LK. Effect of growth regulators on microspore embryogenesis in coconut anthers. Plant Cell Tissue Organ Cult [Internet]. 2009 Feb [cited 2024 Feb 2];96(2):171-80. https://doi.org/10.1007/s11240-008-9473-y

Dalila ZD, Fahmi ABM, Nurkhalida A. Optimization of sterilization method and callus induction of Cocos nucifera Linn. var. Matag from inflorescence. In 2015. p. 1-2. https://doi.org/10.15242/IICBE.C0115029

Zawawi DD, Bakar MFA, Kadir SNA. Effect of 2, 4-Dichlorophenoxy acetic acid and activated charcoal on callus induction of Cocos nucifera L. hybrid MATAG inflorescence. J Agrobiotechnol [Internet]. 2021;12(1S):51-61. https://doi.org/10.37231/jab.2021.12.1S.270

Satharasinghe S, Bandupriya H, Vidhanaarachchi V, De Silva S. Multiplication and differentiation of ovary-derived callus of coconut (Cocos nucifera L.) for higher embryogenic potential. 2013; p. 49-53.

Perera PI, Hocher V, Verdeil JL, Doulbeau S, Yakandawala DM, Weerakoon LK. Unfertilized ovary: a novel explant for coconut (Cocos nucifera L.) somatic embryogenesis. Plant Cell Rep [Internet]. 2007;26:21-8. https://doi.org/10.1007/s00299-006-0216-4

Perera PI, Vidhanaarachchi V, Gunathilake T, Yakandawala D, Hocher V, Verdeil JL, et al. Effect of plant growth regulators on ovary culture of coconut (Cocos nucifera L.). PCTOC [Internet]. 2009;99:73-81. https://doi.org/10.1007/s11240-009-9577-z

Vidhanaarachchi VRM, Fernando SC, Perera PIP, Weerakoon LK. Application of un-fertilized ovary culture to identify elite mother palms of Cocos nucifera L. with regenerative potential. J Natn Sci Foundation Sri Lanka [Internet]. 2013 Mar 24 [cited 2024 Feb 2];41(1):29. https://doi.org/10.4038/jnsfsr.v41i1.5329

Muhammedali S, Regi T, Sreelekshmi J, Rajesh MK. In vitro regeneration of coconut plantlets from immature inflorescence. Curr Sci. 2019;117:813-20. https://doi.org/10.18520/cs/v117/i5/813-820.

Sugimura Y, Salvaña MJ. Induction and growth of callus derived from rachilla explants of young inflorescences of coconut palm. Can J Bot [Internet]. 1989 Jan 1 [cited 2024 Feb 4];67(1):272-4. https://doi.org/10.1139/b89-038

Vidhana Arachchi VRM, Weerakoon LK. Callus induction and direct shoot formation in in vitro cultured immature inflorescence tissues of coconut. COCOS [Internet]. 2010 Aug 10 [cited 2024 Jan 31];12:39. https://doi.org/10.4038/cocos.v12i0.2164

Sandoval-Cancino G, Sáenz L, Chan JL, Oropeza C. Improved formation of embryogenic callus from coconut immature inflorescence explants. In Vitro Cell Dev Biol - Plant [Internet]. 2016 Sep 1;52(4):367-78. https://doi.org/10.1007/s11627-016-9780-7

Karunaratne S. Culture of leaf tissues of coconut: Developments towards somatic embryogenesis. COCOS. 1989;11:1-10.

Nwite P, Ohanmu E, Aisagbonhi E, Obahiagbon O, Ikhajiagbe B. Sterilization method for reducing microbial contamination and phenolic compounds present in coconut (Cocos Nucifera L.) leaf culture. J Appl Sci Environ Manag.2022;26(2):227-31. https://doi.org/10.4314/jasem.v26i2.8

Sahara A, Roberdi R, Wiendi NMA, Liwang T. Transcriptome profiling of high and low somatic embryogenesis rate of oil palm (Elaeis guineensis Jacq. var. Tenera). Front Plant Sci. 2023 May 12 [cited 2024 Jan 27];14:1142868. https://doi.org/10.3389/fpls.2023.1142868

Pérez-Núñez M, Souza R, Sáenz L, Chan J, Zuniga-Aguilar J, Oropeza C. Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep.2009;28:11-9. https://doi.org/10.1007/s00299-008-0622-4

Montero-Cortés M, Rodríguez-Paredes F, Burgeff C, Pérez-Nuñez T, Córdova I, Oropeza C. Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell Tiss Organ Cult.2010;102:251-8. https://doi.org/10.1007/s11240-010-9767-0

Bhavyashree U, Jayaraj KL, Muralikrishna K, Sajini K, Rajesh M, Karun A. Initiation of coconut cell suspension culture from shoot meristem derived embryogenic calli: A preliminary study. J Phytol.2016;8:13-6.

Osorio-Montalvo P, De-la-Peña C, Oropeza C, Nic-Can G, Córdova-Lara I, Castillo-Castro E, et al. A peak in global DNA methylation is a key step to initiate the somatic embryogenesis of coconut palm (Cocos nucifera L). Plant Cell Rep. 2020 Oct 1;39(10):1345-57. https://doi.org/10.1007/s00299-020-02568-2

Sabana AA, Rajesh MK, Antony G. Dynamic changes in the expression pattern of miRNAs and associated target genes during coconut somatic embryogenesis. Planta. 2020 Mar 12;251:1-18. https://doi.org/10.1007/s00425-020-03368-4.

Karun A, Ramesh SV, Rajesh MK, Niral V, Sudha R, Muralikrishna KS. Conservation and utilization of genetic diversity in coconut (Cocos nucifera L.). In: Priyadarshan PM, Jain SM, editors. Cash Crops: Genetic Diversity, Erosion, Conservation and Utilization [Internet]. Cham: Springer International Publishing; 2022. p. 197-250. https://doi.org/10.1007/978-3-030-74926-2_7

Niral V, Jerard BA, Rajesh MK. Germplasm resources: diversity and conservation. In: Rajesh MK, Ramesh SV, Perera L, Kole C, editors. The Coconut Genome [Internet]. Cham: Springer International Publishing; 2021 [cited 2024 Feb 7]. p. 27-46. (Compendium of Plant Genomes). https://doi.org/10.1007/978-3-030-76649-8_3

Sisunandar, Rival A, Turquay P, Samosir Y, Adkins SW. Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings. Planta. 2010 Jul;232(2):435-47. https://doi.org/10.1007/s00425-010-1186-x

Welewanni I, Jayasekera A, Bandupriya D. Coconut cryopreservation: present status and future prospects. CORD. 2017;33(1):41-61. https://doi.org/10.37833/cord.v33i1.54

Karun A, Sajini KK, Parthasarathy VA. Cryopreservation of mature coconut embryos by desiccation method. CORD. 2005;21(1):34. https://doi.org/10.37833/cord.v21i01.395

Alla-N'Nan O, Gonédelé Bi S, Tiécoura K, Konan Konan JL. Use of plumules cryopreservation to save coconut germplasm in areas infected by lethal yellowing. Afr J Biotechnol.2014;13(16):1702-1706. https://doi.org/10.5897/AJB2014.13670

Lédo AS, Vendrame WA. Coconut micropropagation and cryopreservation. In: Horticultural Reviews. Vol. 48. Wiley; 2021. p. 307-337. https://doi.org/10.1002/9781119750802.ch6

Karun A. Coconut tissue culture: The Indian initiatives, experiences, and achievements. CORD.2017;33(2):11. https://doi.org/10.37833/cord.v33i2.48

Nair M, Karun A. Coconut embryo culture: Present status and future thrust. CORD. 1999;15(2):34-34. https://doi.org/10.37833/cord.v15i02.328

Fernando SC, Vidhanaarachchi VR, Weerakoon LK, Santha ES. What makes clonal propagation of coconut difficult? In: Proceedings of the Asia Pacific Conference on Plant Tissue and Agribiotechnology (APaCPA), 2007 Jun;17:21. https://d1wqtxts1xzle7.cloudfront.net/53077435/181am-libre.pdf?1494482689

El-Gioushy S, Liu R, Fan H. A complete protocol to reduce browning during coconut (Cocos nucifera L.) tissue culture through shoot tips and inflorescence explants. Plant Archives. 2020;20(2):2196-2204. https://www.plantarchives.org/20-2/2196-2204.pdf

Yakandawala D, Verdeil J, Perera P, Hocher V, Weerakoon L. Generation of double haploids in coconut (Cocos nucifera L.) plants via anther culture. Pragna. 2008;12. https://core.ac.uk/download/pdf/52174465.pdf

Kadirikota MP. Studies on in-vitro culture techniques for propagation of coconut (Cocos nucifera L.) [unpublished thesis]. Coimbatore (India): Tamil Nadu Agricultural University; 2018. p. 41-45.

Published

17-01-2025

How to Cite

1.
Nikila A, Renuka R, Kumar KK, Mohanalakshmi M, Suresh J, Thavaprakash N. Advances in coconut micropropagation: prospects, constraints and way forward. Plant Sci. Today [Internet]. 2025 Jan. 17 [cited 2025 Mar. 30];12(sp1). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/5826

Most read articles by the same author(s)

1 2 > >>