Advancements and future prospects in micropropagation techniques for major palm species: Date palm, oil palm, arecanut, and coconut
DOI:
https://doi.org/10.14719/pst.6278Keywords:
arecanut, coconut, date palm, micropropagation, oil palm, organogenesis, palms, somatic embryogenesisAbstract
Palms are widely distributed across warm temperate, tropical, and subtropical regions, showcasing their ecological significance and adaptability to diverse environments. Classification schemes play a crucial role in organizing the vast diversity of palms and provide valuable insights into their evolutionary adaptations. These frameworks enhance our understanding of key species such as date palms, oil palms, and coconuts. Micropropagated palm seedlings are economically essential for global palm industries of food, biofuel, and cosmetics, because they ensure consistent growth, increased yield, and disease resistance. Clonal propagation of superior cultivars is made possible by this technique, maximizing land utilization and increasing yield per hectare. Micropropagated seedlings support large-scale commercial plantations and promote sustainable agriculture in response to the growing demand for palm-derived products worldwide. Furthermore, governments and research- driven initiatives are fostering the adoption of tissue culture methods to meet market needs. To facilitate large-scale propagation, micropropagation techniques have been developed for palms, such as date palms, oil palms, coconuts, and arecanuts. These techniques produce consistent, disease-free planting materials through tissue culture. However, despite their potential, tissue culture techniques face challenges, including low effectiveness, high rates of contamination, and scaling limitations, particularly due to the recalcitrant nature of palm tissues to in vitro conditions. Improvement in tissue culture methods can support sustainable agriculture, drive economic growth, and conserve biodiversity. By enhancing propagation techniques, tissue culture has the potential to address global issues such as environmental sustainability and food security. To fully realize the potential of palms and ensure their continued use in industry and agriculture, further research and development in palm micropropagation are essential.
Downloads
References
Al-Khateeb SA, Al-Khateeb AA, Sattar MN, Mohmand A, El-Beltagi HS. Assessment of somaclonal variation in salt-adapted and non-adapted regenerated date palm (Phoenix dactylifera L.). Fresenius Environ Bull. 2019;28(5):3686-95.
Murphy DJ. The future of oil palm as a major global crop: Opportunities and challenges. J Oil Palm Res. 2014;26(1):1-24.
Sajeev M, Saroj P. Socio-economic determinants and adoption of pest management practices in cashew farming: A study in Dakshina Kannada, Karnataka. 2018.
Foale M. An introduction to the coconut palm. Coconut Genetic Resources. 2005;1.
Karun A, Siril EA, Radha E, Parthasarathy VA. Somatic embryogenesis and plantlet regeneration from leaf and inflorescence explants of arecanut (Areca catechu L.). Curr Sci. 2004;25:1623-28.
Al-Khayri JM, Naik PM. Influence of 2iP and 2, 4-D concentrations on accumulation of biomass, phenolics, flavonoids and radical scavenging activity in date palm (Phoenix dactylifera L.) cell suspension culture. Horticulturae. 2022;8(8):683. https://doi.org/10.3390/horticulturae8080683
Alizadeh M, Krishna H, Eftekhari M, Modareskia M, Modareskia M. Assessment of clonal fidelity in micropropagated horticultural plants. J Chem Pharm Res. 2015;7(12):977-90.
Bekheet S. Direct organogenesis of date palm (Phoenix dactylifera L.) for propagation of true-to-type plants. Sci Agric. 2013;4(3):85-92.
Jain SM, Priyadarshan P. Breeding plantation tree crops: Tropical species: Springer; 2009. 978-0-387-71201-7. https://doi.org/10.1007/978-0-387-71201-7
George EF, Hall MA, De Klerk G-J. Plant propagation by tissue culture. Volume I. The background. Plant propagation by tissue culture. 2008;1:205-26. https://doi.org/10.1007/978-1-4020-5005-3_1
Hartmann HT, Kester DE. Plant propagation: Principles and practices. Pearson Education, Inc., Publishing as Prentice Hall;1975. p. 662-67.
Razdan MK. An introduction to plant tissue culture. Oxford and IBH Publishing; 2002. p. 211-19.
Raemakers C, Jacobsen Ea, Visser R. Secondary somatic embryogenesis and applications in plant breeding. Euphytica. 1995;81:93-107. https://doi.org/10.1007/BF00022463
Preece J, Sutter E. Acclimatization of micropropagated plants to the greenhouse and field. Micropropagation: Technology and application: Springer; 1991. p.71-93. https://doi.org/10.1007/978-94-009-2075-0_5
Thorpe TA. History of plant tissue culture. Molecular Biotechnology. Springer; 2007. 37:169-80. https://doi.org/10.1007/s12033-007-0031-3
Leva A, Petruccelli R, Rinaldi L. Somaclonal variation in tissue culture: A case study with olive. Recent advances in plant in vitro culture. Intech Publishers. 2012;7:123-50. https://doi.org/10.5772/52760
Al-Khayri JM, Naik PM. Date palm micropropagation: Advances and applications. Ciência e Agrotecnologia. 2017;41:347-58. https://doi.org/10.1590/1413-70542017414000217
Zaid A, De Wet P. Chapter II: Origin, geographical distribution and nutritional values of date palm. Date palm cultivation FAO plant production and protection paper. 2002;156.
Al-Khayri JM. Influence of yeast extract and casein hydrolysate on callus multiplication and somatic embryogenesis of date palm (Phoenix dactylifera L.). Sci Hortic. 2011;130(3):531-35. https://doi.org/10.1016/j.scienta.2011.07.024
Abul-Soad AA, Al-Khayri JM. Date palm somatic embryogenesis from inflorescence explant. Step wise protocols for somatic embryogenesis of important woody plants: Volume II. Springer;2018. p. 329-47. https://doi.org/10.1007/978-3-319-79087-9_25
Sidky R. Optimized direct organogenesis from shoot tip explants of date palm. Date palm biotechnology protocols Volume I: Tissue culture applications. Springer; 2017. p. 37-45. https://doi.org/10.1007/978-1-4939-7156-5_4
Al-Khayri JM, Jain SM, Johnson DV. Date palm biotechnology protocols Volume I: Tissue culture applications: Springer; 2017.p.3-40. https://doi.org/10.1007/978-1-4939-7156-5
Abid W, Ammar E. Date palm (Phoenix dactylifera L.) wastes valorization: A circular economy approach. Mediterranean fruits bio-wastes: Chemistry, functionality and technological applications. Springer; 2022. p. 403-30. https://doi.org/10.1007/978-3-030-84436-3_17
Mazri MA, Meziani R. Micropropagation of date palm: A review. Cell Dev Biol. 2015;4(3):160.
Zein El Din AF, Darwesh RS, Ibrahim MF, Salama GM, Shams El-Din IM, Abdelaal WB, et al. Antioxidants application enhances regeneration and conversion of date palm (Phoenix dactylifera L.) somatic Embryos. Plants. 2022;11(15):2023. https://doi.org/10.3390/plants11152023
Saptari RT, Sinta MM, Riyadi I. Propagasi in vitro tanaman kurma (Phoenix dactylifera L.) pada bioreaktor dengan perendaman sesaat. Menara Perkebunan. Humana Press, New York;2020. p. 88. DOI: http://dx.doi.org/10.22302/iribb.jur.mp.v88i2.394
Mazri MA, Belkoura I, Meziani R, Es-Saoudy H, Rachad F, Elmaataoui S. Impact of osmotica and plant growth regulators on somatic embryogenesis of date palm. Curr Agric Res J. 2019;7(3):296. https://doi.org/10.12944/CARJ.7.3.04
Solangi N, Abul-Soad AA, Markhand GS, Jatoi MA, Jatt T, Mirani AA. Comparison among different auxins and cytokinins to induce date palm (Phoenix dactylifera L.) somatic embryogenesis from floral buds. Pak J Bot. 2020;52(4):1243-49. https://doi.org/10.30848/PJB2020-4(30)
Khierallah HS, Bader SM, Ibrahim KM, Al-Jboory IJ. Date palm status and perspective in Iraq. Date palm genetic resources and utilization. Volume 2; Asia and Europe. Springer, Dordrecht; 2015. p. 97-152. https://doi.org/10.1007/978-94-017-9707-8_4
Hazzouri KM, Flowers JM, Visser HJ, Khierallah HS, Rosas U, Pham GM, et al. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat Commun. 2015;6(1):8824. https://doi.org/10.1038/ncomms9824
Bekheet SA, El-Sharabasy SF. Date palm status and perspective in Egypt. Date palm genetic resources and utilization.Volume 1, Africa and the Americas. Springer; 2015. p. 75-123. https://doi.org/10.1007/978-94-017-9694-1_3
Kishore B. Studies on in vitro propagation of stevia (Stevia rebaudiana bertoni.) Doctoral dissertation, Anand Agricultural University; 2003.p.38-96.
Corley RHV, Tinker PB. The oil palm: John Wiley and Sons; Black well science Ltd. 2015. p.138-73. https://doi.org/10.1002/9781118953297
Subhi SM, Tahir NI, Abd Rasid O, Ramli U, Othman A, Masani M, et al. Post-genomic technologies for the advancement of oil palm research. J Oil Palm Res. 2017;29(4):469-86. https://doi.org/10.21894/jopr.2017.00013
Teixeira J, Söndahl M, Nakamura T, Kirby E. Establishment of oil palm cell suspensions and plant regeneration. Plant Cell, Tissue Org Cult. 1995;40:105-11. https://doi.org/10.1007/BF00037662
Mariani TS, Sasmitamiharja D, Mienanti D, Latif S, Ginting G, Miyake H. Somatic embryogenesis of oil palm (Elaeis guineensis Jacq.) for synthetic seed production. Asian J Appl Sci. 2014;2(3).
Renzaglia KS, Garbary DJ. Motile gametes of land plants: diversity, development and evolution. Crit Rev Plant Sci. 2001;20(2):107-213. https://doi.org/10.1080/20013591099209
Curtis MD, Grossniklaus U. Plant genetics and development. Handbook of plant science. John Wiley and Sons Ltd. 2007; p. 331. https://doi.org/10.1002/9780470015902.a0002033
Romyanon K, Mosaleeyanon K, Kirdmanee C. Direct-shoot organogenesis as an alternative protocol for in vitro regeneration of oil palm (Elaeis guineensis Jacq.). Sci Hortic. 2015;195:1-7. https://doi.org/10.1016/j.scienta.2015.08.038
Sumaryono S, Riyadi I. Ex vitro rooting of oil palm (Elaeis guineensis Jacq.) plantlets derived from tissue culture. Indonesian J Agric Sci. 2011;12(2):57-62. https://doi.org/10.21082/ijas.v12n2.2011.p57-62
Wichasawasdi J, Unsrisong S, Meesangkaew S, Koauychai P, Kuntud P. Shoot multiplication of oil palm (Elaeis guineensis Jacq.) by shoot tip culture. FAO, United Nations. 2010;p.2-6.
Panggabean NH, Basyuni M, Nurwahyuni I. Oil palm (Elaeis guineensis Jacq.) micropropagation via somatic embryogenesis from female inflorescences explants. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing; 2021. 912(1):282. https://doi.org/10.1088/1755-1315/912/1/012029
Eke CR, Akomeah P, Asemota O. Somatic embryogenesis in date palm (Phoenix dactylifera L.) from apical meristem tissues from'zebia'and'loko'landraces. African J Biotech. 2005;4(3):244.
Karun A, Rajesh MK, Muralikrishna KS. Somatic embryogenesis and bioreactors. Cur Sci. 2015;108(10):17-82.
Chin H. Strategies for conservation of recalcitrant species. Plant biotechnology laboratory. Springer; 1996. p. 12-45.
Gantait S, Kundu S. In vitro biotechnological approaches on Vanilla planifolia Andrews: Advancements and opportunities. Acta Physiol Plant. 2017;39(9):196. https://doi.org/10.1007/s11738-017-2462-1
Bhat R, Sujatha S, Bhavishya, Priya U, Gupta A, Uchoi A. Arecanut (Areca catechu L.). Soil health management for plantation crops: Recent advances and new paradigms. Springer; 2024. p. 177-206. https://doi.org/10.1007/978-981-97-0092-9_4
Rillo EP, Paloma MBF. Storage and transport of zygotic embryos of Cocos. Plant Genetic Resources Newsletter. 1991; p.2-4.
Fernando SC, Gamage CK. Clonal propagation of coconut: Improved culture conditions for rhyzogenesis. InCocos. 2010;10:21-23. https://doi.org/10.4038/cocos.v10i0.2134
Sajini K, Karun A, Amarnath C, Engelmann F. Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos by vitrification. CryoLetters. 2011;32(4):317-28.
Pais MS. Somatic embryogenesis induction in woody species: The future after OMICs data assessment. Front Plant Sci. 2019;10:240. https://doi.org/10.3389/fpls.2019.00240
Hettiarachchi HDBK, Vidhanaarachchi VRM, Jayarathna SPNC, Dinum P. Effect of exogenous polyamines on coconut (Cocos nucifera L.) embryogenic callus multiplication. Cocos: J Coconut Res Inst Srilanka. 2020;23(1):47-56. https://doi.org/10.4038/cocos.v23i1.5823
Wilms H, De Bièvre D, Longin K, Swennen R, Rhee J, Panis B. Development of the first axillary in vitro shoot multiplication protocol for coconut palms. Sci Rep. 2021;11(1):18367. https://doi.org/10.1038/s41598-021-97718-1
Rohith S, Kavibalan S, Thangaraj K, Suresh J, Ananthan M, Renuka R. Characterization of mother palms and novel techniques to produce elite seedlings of coconut var. Chowghat Orange Dwarf. Electron J Plant Breed. 2023;14(3):867-75. https://doi.org/10.37992/2023.1403.112
Sisunandar, Rival A, Turquay P, Samosir Y, Adkins SW. Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings. Planta. 2010;232:435-47. https://doi.org/10.1007/s00425-010-1186-x
Welewanni I, Jayasekera A, Bandupriya D. Coconut cryopreservation: Present status and future prospects. Coconut Res Dev J. 2017;33(1):41-61. https://doi.org/10.37833/cord.v33i1.54
Ueda S, Ceniza MS, Sugimura Y. Proliferative responses induced from coconut embryo tissues cultured in vitro. Japanese J Trop Agric. 1993;37(1):38-41.
Nunez TC. Doubling macapuno seedling production through embryo splitting. Ann Trop Res (Philippines). 1998;20:41-49.
Chandrakala D, Renuka R, Sushmitha D. Influence of 2, 4-D and TDZ on direct organogenesis in coconut var. East Coast Tall. Int J Chem Std. 2019;7:4111-15.
Sakai A, Engelmann F. Vitrification, encapsulation-vitrification and droplet-vitrification: A review. CryoLetters. 2007;28(3):151-72.
Karun A, Rajesh MK, Sajini KK, Muralikrishna KS, Neema M, Shareefa M, et al. Coconut tissue culture: The Indian initiatives, experiences and achievements. Coconut Res and Dev Board. 2017;33(2):14-24. https://doi.org/10.37833/cord.v33i2.48
Sushmitha D, Renuka R, Chandrakala D. Studies on in vitro culture of coconut var. Chowghat Orange Dwarf through direct organogenesis. Int J Curr Microbiol Appl Sci. 2019;8(6):2391-98. https://doi.org/10.20546/ijcmas.2019.806.284
Etienne H, Berthouly M. Temporary immersion systems in plant micropropagation. Plant Cell, Tissue Org Cult. 2002;69:215-31. https://doi.org/10.1023/A:1015668610465
Corredoira E, Vieitez AM, Ballester A. Eucalypts (Eucalyptus globulus Labill.). Step wise protocols for somatic embryogenesis of important woody plants: Volume I. Springer; 2018. p. 269-82. https://doi.org/10.1007/978-3-319-89483-6_20
Benson EE. Cryopreservation of phytodiversity: A critical appraisal of theory and practice. Crit Reviews Plant Sci. 2008;27(3):141-219. https://doi.org/10.1080/07352680802202034
Rani V, Parida A, Raina SN. Chromosome number dependent genome size and RAPD fingerprinting diagnostics for genetic integrity of enhanced axillary branching-derived plants of ten forest tree species. In: IV International Symposium on in vitro Culture and Horticultural Breeding. ISHS Acta Horticulturae; 2000.p.534. https://doi.org/10.17660/ActaHortic.2001.560.108
Anitha N, Jayaraj KL, Kumar EP, George J, Rajesh MK. Assessment of cross-taxa utility of coconut microsatellite markers. Indian J Hortic. 2008;65(3):317-21.
Teixeira MA, Vieira PE, Pleijel F, Sampieri BR, Ravara A, Costa FO. Molecular and morphometric analyses identify new lineages within a large Eumida (Annelida) species complex. Zoo Scrip. 2020;49(2):222-35. https://doi.org/10.1111/zsc.12397
Gantait S, Kundu S, Wani SH, Das PK. Cryopreservation of forest tree seeds: A mini-review. J Forest Environ Sci. 2016;32(3):311-22. https://doi.org/10.7747/JFES.2016.32.3.311
Al-Mayahi AMW. The effect of polyamines and silver thiosulphate on micropropagation of Date palm followed by genetic stability assessment. World J Microbiol Biotech. 2022;38(7):124. https://doi.org/10.1007/s11274-022-03305-5
Muda NA, Awal A. Sugar palm (Arenga pinnata Wurmb Merr.): A review on plant tissue culture techniques for effective breeding. In: IOP Conference Series: Earth and Environmental Science, IOP Publishing; 2021. 715(1):2-7. https://doi.org/10.1088/1755-1315/715/1/012016
Ganapathi T. ln vitro culture of embryos of areca nut (Areca catechu L). The French Agric Res Centre Int Dev. 1997;52(5);313115.
Bhojwani SS, Razdan MK. Plant tissue culture: Theory and practice: Elsevier; 1986.p.11-143.
Bairu MW, Aremu AO, Van Staden J. Somaclonal variation in plants: Causes and detection methods. Plant Growth Regul. 2011;63:147-73. https://doi.org/10.1007/s10725-010-9554-x
Daquinta M, Lezcano Y, Escalona M, Santos R. In vitro multiplication of FHIA-18 plantain in the presence of Paclobutrazol. Infomusa. 2001; p.22.
Gupta KK, Jain S. A novel multilevel inverter based on switched DC sources. Transactions on Industrial Electronics. Inst ElectElectron Engin. 2013;61(7):3269-78. https://doi.org/10.1109/TIE.2013.2282606
Roig J, Cantos M, Balciscueta Z, Uribe N, Espinosa J, Roselló V, et al. Hartmann’s operation: How often is it reversed and at what cost? A multicentre study. Colorectal Dis. 2011;13(12):396-402. https://doi.org/10.1111/j.1463-1318.2011.02738.x
Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: Technological concepts and future applications. J Nanoparticle Res. 2008;10:507-17. https://doi.org/10.1007/s11051-007-9275-x
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. https://doi.org/10.1038/nature14539
Parveez GKA, Rasid OA, Masani MYA, Sambanthamurthi R. Biotechnology of oil palm: Strategies towards manipulation of lipid content and composition. Plant Cell Rep. 2015;34:533-43. https://doi.org/10.1007/s00299-014-1722-4
Al-Mayahi AMW. Thidiazuron-induced in vitro bud organogenesis of the date palm (Phoenix dactylifera L.) cv. Hillawi. African JBiotech. 2014;13(35). https://doi.org/10.5897/AJB2014.13762
Al-Najm A, Brauer S, Trethowan R, Ahmad N. Optimisation of invitro micropropagation'of several date palm cultivars. Aus JCrop Sci. 2018;12(12):1937-49. https://doi.org/10.21475/ajcs.18.12.12.p1267
Al-Khayri JM. Date palm Phoenix dactylifera L. Protocol for somatic embryogenesis in woody plants: Springer; 2005. p. 309-19. https://doi.org/10.1007/1-4020-2985-3_25
Elmaataoui S, Mazri MA, Meziani R, Bouchiha F, Anjarne M, Alfeddy MN. Optimization of auxin-cytokinin combination for rapid proliferation of adventitious buds of date palm cv. Aziza Bouzid. GSC Biol Pharma Sci. 2020;11(1):1-8. https://doi.org/10.30574/gscbps.2020.11.1.0071
Abdelaziz AM, Soliman S, Heakal RM, Ahmed T, Hassanin A. Micropropagation of zaghlol and barhy date palm cultivars using immature female inflorescence explants: Effect of growth regulators balance. Zagazig JAgric Res. 2019;46(6):2023-35. https://doi.org/10.21608/zjar.2019.51922
Nwaoguala CNC, Shittu HO. Effects of growth regulators and type-variety of oil palm (Elaeis guineensis Jacq.) on direct organogenesis. Notulae Sci Biol. 2018;10(2):251-58. https://doi.org/10.15835/nsb10210234
Pfahler P, Pereira M, Barnett R. Genetic variation for in vitro sesame pollen germination and tube growth. Theor Appl Genet. 1997;95:1218-22. https://doi.org/10.1007/s001220050684
Wahid MB, Abdullah SNA, IE H. Oil Palm: Achievements and potential. Plant Prod Sci. 2005;8(3):288-97. https://doi.org/10.1626/pps.8.288
Khalid N, Hamidi HNA, Thinagar S, Marwan NF. Crude palm oil price forecasting in Malaysia: An econometric approach. J Ekonomi Malaysia. 2018;52(3):263-78. https://doi.org/10.17576/JEM-2018-5203-19
Verdeil J-L, Hocher V, Huet C, Grosdemange F, Escoute J, Ferrière N, et al. Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Annals Bot. 2001;88(1):9-18. https://doi.org/10.1006/anbo.2001.1408
Fernando SC, Weerakoon L, Perera P, Bandupriya H, Ambagala I, Gamage C, et al. Genetic fidelity and ex vitro performance of tissue-cultured coconut plants. In: Proceedings of the International Conference of the Coconut Research Institute of Sri Lanka–Part II; 2004. p.19. https://doi.org/10.1007/978-3-030-44988-9_11
Sáenz-Carbonell L, Nguyen Q, López-Villalobos A, Oropeza-Salín C. Coconut micropropagation for worldwide replanting needs. Coconut Biotechnology: Towards the Sustainability of the ‘Tree of Life’. Springer; 2020. p. 227-40. https://doi.org/10.1016/j.matpr.2020.12.248
Mohammed NK, Samir ZT, Jassim MA, Saeed SK. Effect of different extraction methods on physicochemical properties, antioxidant activity of virgin coconut oil. Materials Today: Proceedings. 2021;42:2000-05. https://doi.org/10.1016/j.matpr.2020.12.248
Khan FS, Li Z, Shi P, Zhang D, Htwe YM, Yu Q, et al. Transcriptional regulations and hormonal signaling during somatic embryogenesis in the coconut tree: An insight. Forests. 2023;14(9):1800. https://doi.org/10.3390/f14091800
Lestari RS, Suwardi S. Banana sprouts induction in various media and in vitro growth regulators. Int JAgric Sci. 2020;12(16):10149-51.
Dinarti D, Sudarsono S, Irawan J. In vitro responses of Areca catechu immature embryos on medium containing plant growth regulators. In: IOP Conference Series: Earth and Environ Sci. 2021;694(1):012026. https://doi.org/10.1088/1755-1315/694/1/012026

Downloads
Published
Versions
- 30-01-2025 (2)
- 30-01-2025 (1)
How to Cite
Issue
Section
License
Copyright (c) 2025 P keerthana, R Renuka, B N Manikanda, V Rajasree, J Suresh, S Rajesh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).