Nanobiosensors for early detection of plant pathogens

Authors

DOI:

https://doi.org/10.14719/pst.4285

Keywords:

application, biosensors, detection, Plant pathogen

Abstract

Plant pathogens are a major concern in production of crops as they lead to a great loss of food grains. Although several methods are available to manage the diseases and the chemical-based methods are frequently used, and sometimes indiscriminate use poses serious problems to the environment. It is, therefore, necessary to detect plant pathogens at an early stage in order to control epidemics. Plant pathogens can be detected using conventional methods such as culture-dependent, biochemical and molecular techniques; however, these methods need advanced technical skills and well-equipped laboratory facilities and are not suitable for in situ analysis. Several nanotechnology-based methods are available for plant pathogen detection. Among them, biosensing systems for early detection of the pathogen using nanobiosensor are gaining momentum in field of research on plant pathogen detection. Materials having size ranging from one and one hundred nanometers are known as nanoparticles. These materials have special qualities that can be used to improve agricultural practices. Nanobiosensors are novel integrated systems of biosensors that are made up of a bioreceptor, transducer and a detector on the nano scale size. These nano-inspired biosensors have played a major role in enhancing nature of life through different medical, environmental and quality-control applications globally. Numerous nanobiosensors have been developed, including those for detecting plant infections caused by fungi, viruses, and bacteria. This review will contribute to understanding the basics of biosensors and their accessible biosensor based detecting tools and techniques for plant pathogens.

Downloads

Download data is not yet available.

References

Shivashakarappa K, Venkatesh Reddy, Tupakula VK, Ali Farnian, Abhilash Vuppula, Raghavendra Gunnaiah. Nanotechnology for the detection of plant pathogens. Plant Nano Biology. 2022;100018. https://doi.org/10.1016/j.plana.2022.100018.

De Boer SH, Lopez MM. New grower-friendly methods for plant pathogen monitoring. Annu Rev Phytopathol. 2012;50:197-218. https://doi.org/10.1146/annurev-phyto-081211-172942

Martinelli F, Scalenghe R, Davino S, et al. Advanced methods of plant disease detection. A review. Agron Sustain Dev. 2015;35:1-25. https://doi.org/10.1007/s13593-014-0246-1

Pallás V, Sánchez-Navarro JA, James D. Recent Advances on the multiplex molecular detection of plant viruses and viroids. Front Microbiol. 2018;9:2087. https://doi.org/10.3389/fmicb.2018.02087

Rossella Santonocito, Rossana Parlascino, Alessia Cavallaro, Roberta Puglisi, Andrea Pappalardo, Francesco Aloi, et al. Detection of plant pathogenic fungi by a fluorescent sensor array. Sensors and Actuators B: Chemical. 2023;393:134305. https://doi.org/10.1016/j.snb.2023.134305.

Dada AO, Adekola FA, Adeyemi OS, Bello OM, Oluwaseun AC, Awakan OJ, Grace FAA. Exploring the effect of operational factors and characterization imperative to the synthesis of silver nanoparticles. In. Ed. Kiran Maz. Silver Nanoparticles-Fabrication, Characterization and Applications. Intech Open (Internet); 2018. 118:223-27. https://doi.org/10.5772/intechopen.76947

de la Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol. 2012;7(12):821-24. https://doi.org/10.1038/nnano.2012.186

Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA. Plant pathogen nanodiagnostic techniques: forthcoming changes. Biotechnol Biotechnol Equip. 2014;28(5):775-85. https://doi.org/10.1080/13102818.2014.960739

Kashyap PL, Kumar S, Jasrotia P, Singh DP, Singh GP. Nanosensors for plant disease diagnosis: Current understanding and future perspectives. In: Pudake R., Chauhan N, Kole C. editors. Nanoscience for Sustainable Agriculture. Springer, Cham; 2019. 189-205. https://doi.org/10.1007/978-3-319-97852-9_9

Navya PN, Daima HK. Rational engineering of physiochemical properties of nanomaterials for biochemical application with nano toxicological perspectives. Nano Convergence. 2016;3. https://doi.org/10.1186/s40580-016-0064-z

Jain K. Nanodiagnostics: application of Nanotechnology (NT) in molecular diagnostics. Expert Rev Mol Diagn. 2003;(2):153-16.

Kumar A, Furtado VL, Gonçalves JM, Bannitz-Fernandes R, Netto LES, Araki K, Bertotti M. Amperometric microsensor based on nanoporous gold for ascorbic acid detection in highly acidic biological extracts. Anal Chim Acta. 2020;1095:61-70. https://doi.org/10.1016/j.aca.2019.10.022

Morrison GA, Fu J, Lee GC, Wiederhold NP, Cañete-Gibas CF, Bunnik EM, Wickes BL. Nanopore sequencing of the fungal intergenic spacer sequence as a potential rapid diagnostic assay. J Clin Microbiol (Internet). 2020 (Cited Nov 18);58(12):e01972-20. https://doi.org/10.1128/JCM.01972-20

Sadanandom A, Napier RM. Biosensors in plants. Curr Opin Plant Biol (Internet). 2010 (Cited Dec);13(6):736-43. https://doi.org/10.1016/j.pbi.2010.08.010

Singh LB, Zeshmarani DS, Hijam C, Qutub MM, Singh YH, Prabin S, Singh OW. Nanotechnology and its role in plant pathology. Pharma Innovation. 2023;12:37-49. https://doi.org/10.22271/tpi.2023.v12.i12a.24452

Liu C, Xu C, Xue N, Sun JH, Cai H, Li T, et al. Enzyme biosensors for point-of-care testing. In: Siva Yellampalli, editor. MEMS Sensors: Des Appl; 2018. 49:49-70. https://doi.org/10.5772/intechopen.73249

Elmer W, White JC. The future of nanotechnology in plant pathology. Annual Review of Phytopathology. 2018;56:111-33. https://doi.org/10.1146/annurev-phyto-080417-050108

Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Basel). 2021 Feb 5;21(4):1109. doi: 10.3390/s21041109. PMID: 33562639; PMCID: PMC7915135

Akbar Vaseghi, Naser Safaie, Babak Bakhshinejad, Afshin Mohsenifar, Majid Sadeghizadeh. Detection of Pseudomonas syringae pathovars by thiol-linked DNA–Gold nanoparticle probes. Sensors and Actuators B: Chemical. 2013;181:644-51.https://doi.org/10.1016/j.snb.2013.02.018.

Dubert B, Calame M, Libchaber AJ. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnology. 2001;19:365-70. https://doi.org/10.1038/86762

Lau HY, Wu H, Wee EJ, Trau M, Wang Y, Botella JR. Specific and sensitive isothermal electrochemical biosensor for plant pathogen DNA detection with colloidal gold nanoparticles as probes. Sci Rep. [Internet]. 2017 [cited Jan 17];7:38896. https://doi.org/10.1038/srep38896

Li LL. Self-assembled nanomaterials for bacterial infection diagnosis and therapy. In: Wang H, Li LL. editors. In vivo self-assembly nanotechnology for biomedical applications. Nanomedicine and Nanotoxicology. Singapore: Springer; 2018. p 57-88. https://doi.org/10.1007/978-981-10-6913-0_3

Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, et al. Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Advanced Materials Research. 2009;79-82:513-16. https://doi.org/10.4028/www.scientific.net/AMR.79-82.513

Farber C, Mahnke M, Sanchez L, Kurouski D. Advanced spectroscopic techniques for plant disease diagnostics. A review. Tr AC Trends in Analytical Chemistry. 2019;118:43-49. https://doi.org/10.1016/j.trac.2019.05.022

Yamaguchi T, Tsuruda Y, Furukawa T, Negishi L, Imura Y, Sakuda S, et al. Synthesis of CdSe quantum dots using Fusarium oxysporum. Materials (Basel). 2016; 9(10):855. https://doi.org/doi: 10.3390/ma9100855

Regiart M, Fernández-Baldo MA, Villarroel-Rocha J, Messina GA, Bertolino FA, Sapag K, et al. Microfluidic immunosensor based on mesoporous silica platform and CMK-3/poly-acrylamide-co-methacrylate of dihydrolipoic acid modified gold electrode for cancer biomarker detection. Anal Chim Acta [Internet]. 2017 [Cited Apr 22]; 963:83-92. https://doi.org/10.1016/j.aca.2017.01.029

Jarocka U, W?sowicz M, Radecka H, Malinowski T, Michalczuk L, Radecki J. Impedimetric immunosensor for detection of plum pox virus in plant extracts. Electroanalysis. 2011;23(9):2197-204. https://doi.org/10.1002/elan.201100152

Sellappan L, Manoharan S, Sanmugam A, Anh NT. Role of nanobiosensors and biosensors for plant virus detection. Nanosensors for Smart Agriculture. 2022;493-506. https://doi.org/10.1016/B978-0-12-824554-5.00004-5

You C, Bhagawati M, Brecht A, Piehler J. Affinity capturing for targeting proteins into micro and nanostructures. Anal Bioanal Chem [Internet]. 2009 [Cited Mar 2009];393(6-7):1563-70. https://doi.org/10.1007/s00216-008-2595-6

Bhagat Y, Gangadhara K, Rabinal C, Chaudhari G, Ugale P. Nanotechnology in agriculture: a review. Journal of Pure and Applied Microbiology. 2015;9(1):737-47.

Sharma A, Rogers KR. Biosensors. Measurement Science and Technology. 1994;5(5):461. https://doi.org/10.1088/0957-0233/5/5/001

Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chemical Society Reviews. 2010;39:1747-63. https://doi.org/10.1039/b714449k

Fang Y, Ramasamy RP. Current and prospective methods for plant disease detection. Biosensors (Basel). 2015;5(3):537-61. https://doi.org/10.3390/bios5030537

Luo X, Morrin A, Killard AJ, Smyth MR. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis. 2006;18(4):319-26. https://doi.org/10.1002/elan.200503415

Freitas TA, Proença CA, Baldo TA, Materón EM, Wong A, Magnani RF, Faria RC. Ultrasensitive immunoassay for detection of Citrus tristeza virus in citrus sample using disposable microfluidic electrochemical device. Talanta (Internet). 2019 (Cited Dec, 1);205:120110. https://doi.org/10.1016/j.talanta.2019.07.005

Zhao Y, Liu L, Kong D, Kuang H, Wang L, Xu C. Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii sbusp. stewartii. ACS Appl Mater Interfaces. 2014;6(23):21178-83. https://doi.org/10.1021/am506104r

Haji-Hashemi H, Parviz Norouzi, Mohammad Reza Safarnejad, Bagher Larijani, Mohammad Mahdi Habibi, Hamideh Raeisi, Mohammad Reza Ganjali. Sensitive electrochemical immunosensor for citrus bacterial canker disease detection using fast Fourier transformation square-wave voltammetry method. Journal of Electroanalytical Chemistry. 2018;820(4):111-17. https://doi.org/10.1016/j.jelechem.2018.04.062

Lu L, Chee G, Yamada K, Jun S. Electrochemical impedance spectroscopic technique with a functionalized microwire sensor for rapid detection of foodborne pathogens. Biosens Bioelectron. 2013;42:492-95. https://doi.org/10.1016/j.bios.2012.10.060

Chaudhary M, Verma S, Kumar A, Basavaraj YB, Tiwari P, Singh S, et al. Graphene oxide based electrochemical immunosensor for rapid detection of groundnut bud necrosis orthotospovirus in agricultural crops. Talanta (Internet). 2021(Cited Dec 1);235:122717. https://doi.org/10.1016/j.talanta.2021.122717

Byrne B, Stack E, Gilmartin N, O'Kennedy R. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors (Basel). 2009;9(6):4407-45. https://doi.org/10.3390/s90604407

Lei Y, Chen W, Mulchandani A. Microbial biosensors. Anal Chim Acta. 2006;568(1-2):200-10. https://doi.org/10.1016/j.aca.2005.11.065

Ansari AA, Alhoshan M, Alsalhi MS, Aldwayyan AS. Prospects of nanotechnology in clinical immunodiagnostics. Sensors (Basel). 2010;10(7):6535-81. https://doi.org/10.3390/s100706535

Leonard P, Hearty S, Brennan, Dunne L, Quinn J, Chakraborty T, O'Kennedy R. Advances in biosensors for detection of pathogens in food and water. Enzym Microb Technol. 2003;32(1):3-13. https://doi.org/10.1016/S0141-0229(02)00232-6

Nicole JR, Dzyadevych SV. Conductometric Microbiosensors for environmental monitoring. Sensors. 2008;8(4):2569-88. https://doi.org/10.3390/s8042569

Khater M, De La Escosura-Muñiz A, Quesada-González D, Merkoçi A. Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Analytica Chimica Acta. 2019;1046:123-31. https://doi.org/10.1016/j.aca.2018.09.031

Shoute LCT, Anwar A, MacKay S, Abdelrasoul GN, Lin D, Yan Z, et al. Immuno-impedimetric biosensor for onsite monitoring of ascospores and forecasting of sclerotinia stem rot of Canola. Sci Rep (Internet). 2018 (cited Aug 17);8(1):12396. https://doi.org/10.1038/s41598-018-30167-5

Cebula Z, ?o??dowska S, Dzi?bowska K, Skwarecka M, Malinowska N, Bia?obrzeska W, et al. Detection of the plant pathogen Pseudomonas syringae pv. lachrymans on antibody-modified gold electrodes by electrochemical impedance spectroscopy. Sensors (Basel). (Internet). 2019 (cited 2019 Dec 9);19(24):5411. https://doi.org/10.3390/s19245411

Ngeh-Ngwainbi J, Suleiman AA, Guilbault GG. Piezoelectric crystal biosensors. Biosensors and Bioelectronics. 1990;5(1):13-26. https://doi.org/10.1016/0956-5663(90)80023-7

Zeng C, Huang X, Xu J, Li G, Ma J, Ji HF, et al. Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor. Anal Biochem. 2013;440(1):18-22. https://doi.org/10.1016/j.ab.2013.04.026

Eun AJ, Huang L, Chew FT, Li SF, Wong SM. Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. J Virol Methods. 2002;99(1-2):71-79. https://doi.org/10.1016/S0166-0934(01)00382-2

Skottrup PD, Nicolaisen M, Justesen AF. Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron. 2008;24(3):339-48. https://doi.org/10.1016/j.bios.2008.06.045

Campbell GA, Mutharasan R. Detection of Bacillus anthracis spores and a model protein using PEMC sensors in a flow cell at 1 mL/min. Biosens Bioelectron. 2006;22(1):78-85. https://doi.org/10.1016/j.bios.2005.12.002

Cassedy A, Mullins E, O' Kennedy R. Sowing seeds for the future: The need for on-site plant diagnostics. Biotechnol Adv (Internet). 2020 (cited 2019 Feb 23);39:107358. https://doi.org/10.1016/j.biotechadv.2019.02.014

Candresse T, Lot H, German-Retana S, Krause-Sakate R, Thomas J, Souche S, et al. Analysis of the serological variability of Lettuce mosaic virus using monoclonal antibodies and surface plasmon resonance technology. J Gen Virol. 2007;88(9):2605-10. https://doi.org/10.1099/vir.0.82980-0

Dickert FL, Hayden O, Bindeus R, Mann KJ, Blaas D, Waigmann E. Bioimprinted QCM sensors for virus detection-screening of plant sap. Anal Bioanal Chem. 2004;378(8):1929-34. https://doi.org/10.1007/s00216-004-2521-5

Nugaeva N, Gfeller KY, Backmann N, Düggelin M, Lang HP, Güntherodt HJ, Hegner M. An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores. Microsc Microanal. 2007;13(1):13-17. https://doi.org/10.1017/S1431927607070067

Skottrup P, Hearty S, Frøkiaer H, Leonard P, Hejgaard J, O'Kennedy R, et al. Detection of fungal spores using a generic surface plasmon resonance immunoassay. Biosens Bioelectron. 2007;22(11):2724-29. https://doi.org/10.1016/j.bios.2006.11.017

Lin HY, Huang CH, Lu SH, Kuo IT, Chau LK. Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens Bioelectron. 2014;51:371-78. https://doi.org/10.1016/j.bios.2013.08.009

Chartuprayoon N, Rheem Y, Ng JC, Nam J, Chen W, Myung NV. Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Analytical Methods. 2013;5(14):3497-502. https://doi.org/10.1039/c3ay40371h

Perdikaris A, Vassilakos N, Yiakoumettis I, Kektsidou O, Kintzios S. Development of a portable, high throughput biosensor system for rapid plant virus detection. J Virol Methods. 2011;177(1):94-99. https://doi.org/10.1016/j.jviromet.2011.06.024

Kumar A, Dash SK, Suman DPS. DNA based biosensors for detection of pathogens. In: Singh HP, Chowdapa P, Chakraborty BN, Podile AR. editors. Plant Fungal Disease Management, 1st Edition Chapter: DNA Based Biosensors for Detection of Pathogens, New York. Westville; 2015. pp. 31-35.

Nguyen HH, Lee SH, Lee UJ, Fermin CD, Kim M. Immobilized enzymes in biosensor applications. Materials (Basel). 2019;12(1):121. https://doi.org/10.3390/ma12010121.

Chen JY, Penn LS, Xi J. Quartz crystal microbalance: Sensing cell-substrate adhesion and beyond. Biosens Bioelectron. (Internet). 2018 (cited 2018 Jan 15);99:593-602. https://doi.org/10.1016/j.bios.2017.08.032.

Thies JW, Kuhn P, Thürmann B, Dübel S, Dietzel A. Microfluidic quartz-crystal-microbalance (QCM) sensors with specialized immunoassays for extended measurement range and improved reusability. Microelectronic Engineering. 2017;179:25-30. https://doi.org/10.1016/j.mee.2017.04.023

?eker ?, Elçin AE, Yumak T, S?na? A, Elçin YM. In vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells. Toxicology in vitro. 2014;28:1349-58. https://doi.org/10.1016/j.tiv.2014.06.016

Lim HJ, Saha T, Tey BT, Tan WS, Ooi CW. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens Bioelectron (Internet). 2020 (Cited Nov 15);168:112513. https://doi.org/10.1016/j.bios.2020.112513

Xu JG, Tian CR, Hu QP, Luo JY, Wang XD, Tian XD. Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination. Journal of Agricultural and Food Chemistry. 2009;57:10392-98. https://doi.org/10.1021/jf902778j.

Khater M, de la Escosura-Muñiz A, Merkoçi A. Biosensors for plant pathogen detection. Biosens Bioelectron. 2017;93:72-86. https://doi.org/10.1016/j.bios.2016.09.091.

Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors. Nat Biotechnol. 2003;21(10):1192-99. https://doi.org/10.1038/nbt873

Privett BJ, Shin JH, Schoenfisch MH. Electrochemical sensors. Anal Chem. 2010;82(12):4723-41. https://doi.org/10.1021/ac101075n

Wang L, Li PC. Flexible microarray construction and fast DNA hybridization conducted on a microfluidic chip for greenhouse plant fungal pathogen detection. J Agric Food Chem. 2007 Dec 26;55(26):10509-16. https://doi.org/10.1021/jf0721242

Sabo Wada Dutse, Nor Azah Yusof, Haslina Ahmad, Mohd Zobir Hussein, Zulkarnain Zainal, Roozbeh hushiarian. DNA-based biosensor for detection of Ganoderma boninense, an oil palm pathogen utilizing newly synthesized ruthenium complex [Ru(phen)2(qtpy)]2+ based on a PEDOT-PSS/Ag nanoparticles modified electrode. Int J Electrochem Sci. 2013;8(9):11048–57. https://doi.org/10.1016/S1452-3981(23)13168-3

Dutse SW, Yusof NA, Ahmad H, Hussein MZ, Zainal Z, Hushiarian R. DNA-based biosensor for detection of Ganoderma boninense, an oil palm pathogen utilizing newly synthesized ruthenium complex [Ru(phen)2(qtpy)]2+ based on a PEDOT-PSS/Ag nanoparticles modified electrode. International J Electrochemical Science. 2013;8(9):11048-57. https://doi.org/10.1016/S1452-3981(23)13168-3.

Rana K, Mittal J, Narang J, Mishra A, Pudake RN. Graphene based electrochemical DNA biosensor for detection of false smut of rice (Ustilaginoidea virens). Plant Pathol J. 2021;37(3):291-98. https://doi.org/10.5423/PPJ.OA.11.2020.0207

Byoungho L. Review of the present status of optical fiber sensors. Optical Fiber Technology. 2003;9:57-79. https://doi.org/10.1016/S1068-5200(02)00527-8

Wang R, Tombelli S, Minunni M, Spiriti MM, Mascini M. Immobilisation of DNA probes for the development of SPR-based sensing. Biosens Bioelectron. 2004 Nov 15;20(5):967-74. https://doi.org/10.1016/j.bios.2004.06.013

Yu F, Yao D, Knoll W. Oligonucleotide hybridization studied by a surface plasmon diffraction sensor (SPDS). Nucleic Acids Res (Internet). 2004 (Cited May 20);32(9):e75. https://doi.org/10.1093/nar/gnh067

Zhang CY, Yeh HC, Kuroki MT, Wang TH. Single-quantum-dot-based DNA nanosensor. Nat Mater. 2005;4(11):826-31. https://doi.org/10.1038/nmat1508

Bunde RL, Jarvi EJ, Rosentreter JJ. Piezoelectric quartz crystal biosensors. Talanta. 1998;46(6):1223-36. https://doi.org/10.1016/S0039-9140(97)00392-5

Sato K, Hosokawa K, Maeda M. Colorimetric biosensors based on DNA-nanoparticle conjugates. Anal Sci. 2007;23(1):17-20. https://doi.org/10.2116/analsci.23.17

Glynou K, Ioannou PC, Christopoulos TK, Syriopoulou V. Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal Chem. 2003; 75(16):4155-60. https://doi.org/10.1021/ac034256

Ray A, Mitra AK. Nanotechnology in intracellular trafficking, imaging and delivery of therapeutic agents. In. Editor(s): Ashim K. Mitra, Kishore Cholkar, Abhirup Mandal, Micro and Nano Technologies, Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices, Elsevier; 2017. 169-88. https://doi.org/10.1016/B978-0-323-42978-8.00008-5

Yan X, Li H, Su X. Review of optical sensors for pesticides. TrAC - Trends Anal. Chem. 2018;103:1-20. https://doi.org/10.1016/j.trac.2018.03.004

Song M, Yang M, Hao J. Pathogenic virus detection by optical nanobiosensors. Cell Reports Physical Science. 2021;2(1). https://doi.org/10.1016/j.xcrp.2020.100288

Koczula KM, Gallotta A. Lateral flow assays. Essays Biochem (Internet). 2016 (Cited Jun 30);60(1):111-20. https://doi.org/10.1042/EBC20150012

Yoo SM, Lee SY. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnology (Internet). 2016 (Cited Jan);34(1):7-25. https://doi.org/10.1016/j.tibtech.2015.09.012

Drygin YF, Blintsov AN, Grigorenko VG, Andreeva IP, Osipov AP, Varitzev YA, et al. Highly sensitive field test lateral flow immunodiagnostics of PVX infection. Appl Microbiol Biotechnol. 2012 Jan;93(1):179-89. https://doi.org/10.1007/s00253-011-3522-x

Xu S, Zhang G, Fang B, Xiong Q, Duan H, Lai W. Lateral flow immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize. ACS Appl Mater Interfaces. 2019;11(34):31283-90. https://doi.org/10.1021/acsami.9b08789

Zhang F, Zou M, Chen Y, Li J, Wang Y, Qi X, Xue Q. Lanthanide-labeled immunochromatographic strips for the rapid detection of Pantoea stewartii subsp. stewartii. Biosens Bioelectron. 2014;51:29-35. https://doi.org/10.1016/j.bios.2013.06.065

Feng M, Kong D, Wang W, Liu L, Song S, Xu C. Development of an immunochromatographic strip for rapid detection of Pantoea stewartii subsp. stewartii. Sensors. 2015;15(2):4291-301. https://doi.org/10.3390/s150204291

Zhan F, Wang T, Iradukunda L, Zhan J. A gold nanoparticle-based lateral flow biosensor for sensitive visual detection of the potato late blight pathogen, Phytophthora infestans. Anal Chim Acta (Internet). 2018;(Cited Dec 7);1036:153-61. https://doi.org/10.1016/j.aca.2018.06.083

de Puig H, Bosch I, Gehrke L, Hamad-Schifferli K. Challenges of the nano-bio interface in lateral flow and dipstick immunoassays. Trends Biotechnol. 2017;35(12):1169-80. https://doi.org/10.1016/j.tibtech.2017.09.001.

Pöhlmann C, Dieser I, Sprinzl M. A lateral flow assay for identification of Escherichia coli by ribosomal RNA hybridisation. Analyst. 2014;139(5):1063-71. https://doi.org/10.1039/c3an02059b

Charlermroj R, Himananto O, Seepiban C, Kumpoosiri M, Warin N, Oplatowska M, et al. Multiplex detection of plant pathogens using a microsphere immunoassay technology. PLoS One (Internet). 2013 (Cited Apr) 26;8(4):e62344. https://doi.org/10.1371/journal.pone.0062344

Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31(12):2032-34. https://doi.org/10.1093/bioinformatics/btv098

Dodig S. Interferences in quantitative immunochemical methods. Biochem Med. 2009;19:50-62. https://doi.org/10.11613/BM.2009.005

Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108(2):462-93. https://doi.org/10.1021/cr068107d

Sina AA, Carrascosa LG, Palanisamy R, Rauf S, Shiddiky MJ, Trau M. Methylsorb: a simple method for quantifying DNA methylation using DNA-gold affinity interactions. Anal Chem. 2014;86(20):10179-85. https://doi.org/10.1021/ac502214z

Sina AA, Vaidyanathan R, Dey S, Carrascosa LG, Shiddiky MJ, Trau M. Real time and label free profiling of clinically relevant exosomes. Sci Rep. 2016;6:30460. https://doi.org/10.1038/srep30460

Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem. 2016;60(1):91-100. https://doi.org/10.1042/EBC20150010

Li Y, Schluesener HJ, Xu S. Gold nanoparticle-based biosensors. Gold Bull. 2010;43(1):29-41. https://doi.org/10.1007/BF03214964

Terra IAA, Mercante LA, Andre RS, Correa DS. Fluorescent and colorimetric electrospun nanofibers for heavy-metal sensing. Biosensors (Basel). 2017;7(4):61. https://doi.org/10.3390/bios7040061

Li Z, Paul R, Ba Tis T, Saville AC, Hansel JC, Yu T, et al. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat Plants. 2019;5(8):856-66. https://doi.org/10.1038/s41477-019-0476-y

Published

27-12-2024 — Updated on 01-01-2025

Versions

How to Cite

1.
Vandana JN, Sharavanan PT, Johnson I, Anandham R, Raja K, Karthikeyan G, Angappan K, Vaithiyalingan M. Nanobiosensors for early detection of plant pathogens. Plant Sci. Today [Internet]. 2025 Jan. 1 [cited 2025 Jan. 6];12(1). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4285

Issue

Section

Review Articles

Most read articles by the same author(s)

1 2 > >>