Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Harnessing endophytes: Advanced insights into nutrient acquisition and plant growth enhancement

DOI
https://doi.org/10.14719/pst.5324
Submitted
27 September 2024
Published
23-12-2024 — Updated on 27-08-2025
Versions

Abstract

The rapid growth of the global population and the rising demand for sustainable agriculture have intensified interest in eco-friendly alternatives to synthetic fertilizers. While synthetic fertilizers effectively boost crop yields, they
seriously threaten soil health, human well-being and environmental stability. Researchers are increasingly exploring microbial solutions such as biofertilizers and biocontrol agents. Among these, endophytes-microorganisms that live
within plant tissues without causing harm-show considerable promise. Recent studies underscore the critical role of endophytes, both rhizobial and nonrhizobial, in improving nutrient use efficiency, promoting plant growth and
enhancing resistance to pests, diseases and environmental stresses. However, despite these advancements, significant knowledge gaps remain concerning the mechanisms through which endophytes facilitate macro- and micronutrient acquisition. This review seeks to clarify these mechanisms and highlights the need for more extensive research to fully understand the functional dynamics of endophytes in nutrient acquisition and their potential to support sustainable agricultural practices.

References

  1. 1. Roberts DP, Mattoo AK. Sustainable agriculture—enhancing environmental benefits, food nutritional quality and building crop resilience to abiotic and biotic stresses. Agriculture. 2018;8(1):8. https://doi.org/10.3390/agriculture8010008
  2. 2. Doni F, Mispan MS, Suhaimi NSM, Ishak N, Uphoff N. Roles of microbes in supporting sustainable rice production using the system of rice intensification. Appl Microbiol Biotechnol. 2019;103:5131-42. https://doi.org/10.1007/s00253-019-09879-9
  3. 3. Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al. Food security: The challenge of feeding 9 billion people. Science. 2010;327(5967):812-8. http://dx.doi.org/10.1126/science.1185383
  4. 4. Hannah L, Steele M, Fung E, Imbach P, Flint L, Flint A. Climate change influences on pollinator, forest and farm interactions across a climate gradient. Clim Change. 2017;141:63-75. https://doi.org/10.1007/s10584-016-1868-x
  5. 5. Duan Y, Xu M, Gao S, Liu H, Huang S, Wang B. Long-term incorporation of manure with chemical fertilizers reduced total nitrogen loss in rain-fed cropping systems. Sci Rep. 2016;6(1):33611. https://doi.org/10.1038/srep33611
  6. 6. Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 2017;15(3):e2001793. https://doi.org/10.1371/journal.pbio.2001793
  7. 7. Granada CE, Passaglia LM, De Souza EM, Sperotto RA. Is phosphate solubilization the forgotten child of plant growth-promoting rhizobacteria? Front Microbiol. 2018;9:2054. https://doi.org/10.3389/fmicb.2018.02054
  8. 8. Gull A, Lone AA, Wani NUI. Abiotic and Biotic Stress in Plants. In: Bosco de Oliveira A (ed). Abiotic and Biotic Stress in Plants. IntechOpen. 2019;7:1-8. https://doi.org/10.5772/intechopen.85832
  9. 9. Singh HB, Management of plant pathogens with microorganisms. Proc Indian Natl Sci Acad. 2014;80(2);443-454. https://doi.org/10.16943/ptinsa/2014/v80i2/55120
  10. 10. Jambon I, Thijs S, Weyens N, Vangronsveld J. Harnessing plant-bacteria-fungi interactions to improve plant growth and degradation of organic pollutants. J Plant Interact. 2018;13(1):119-30. https://doi.org/10.1080/17429145.2018.1441450
  11. 11. Zabalgogeazcoa I. Fungal endophytes and their interaction with plant pathogens: A review. Span J Agric Res. 2008;6:138-46. https://doi.org/10.5424/sjar/200806S1-382
  12. 12. Kumar A, Maurya VK, Susmita C, Chuarasiya U, Maurya DK, Singh SK. Environmental factors and plant–microbes (endophytes) interaction: An overview and future outlook. In: Solanki MK, Yadav MK, Singh BP, Gupta VK, editors. Microbial Endophytes and Plant Growth. Academic Press; 2023. p. 245–57. https://doi.org/10.1016/B978-0-323-90620-3.00009-X
  13. 13. Cocking EC. Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil. 2003;252(1):169-75. https://doi.org/10.1023/A:1024106605806
  14. 14. Li J, Wang J, Liu H, Macdonald CA, Singh BK. Application of microbial inoculants significantly enhances crop productivity: A meta-analysis of studies from 2010 to 2020. J Sustain Agric Environ. 2022;1(3):216-25. https://doi.org/10.1002/sae2.12028
  15. 15. Aguk JA. Evaluate the effect of arbuscular mycorrhizal fungi and rhizobacteria inoculation on performance of potato (Solanum tuberosum) [master's thesis]. Nairobi: University of Nairobi; 2013. Available from: http://hdl.handle.net/11295/71744
  16. 16. Alori ET, Babalola OO. Microbial inoculants for improving crop quality and human health in Africa. Front Microbiol. 2018;9:2213. https://doi.org/10.3389/fmicb.2018.02213
  17. 17. Fasusi OA, Cruz C, Babalola OO. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture. 2021;11(2):163. https://doi.org/10.3390/agriculture11020163
  18. 18. Owen NL, Hundley N. Endophytes—The chemical synthesizers inside plants. Sci Prog. 2004;87(2):79-99. https://doi.org/10.3184/003685004783238553
  19. 19. Pimentel MR, Molina G, Dionísio AP, Maróstica Junior MR, Pastore GM. The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int. 2011(1):576286. doi:10.4061/2011/576286
  20. 20. Perotti R. On the limits of biological enquiry in soil science. Proc Int Soc Soil Sci. 1926;2:146-61.
  21. 21. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE. Inside the root microbiome: Bacterial root endophytes and plant growth promotion. Am J Bot. 2013;100(9):1738-50. https://doi.org/10.3732/ajb.1200572
  22. 22. de Bary A. Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. In: Handbuch der physiologischen Botanik, 2. Bd, 1. Abt. Leipzig, W. Engelmann, 1866. p. 342. https://doi.org/10.5962/bhl.title.120970
  23. 23. Petrini O. Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS, editors. Microbial Ecology of Leaves. Brock/Springer Series in Contemporary Bioscience. New York (NY): Springer; 1991. p. 179–197. https://doi.org/10.1007/978-1-4612-3168-4_9
  24. 24. Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L, Reinhold-Hurek B, et al. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci. 2013;4:120. https://doi.org/10.3389/fpls.2013.00120
  25. 25. Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14(6):209. https://doi.org/10.1186/gb-2013-14-6-209
  26. 26. Nair DN, Padmavathy S. Impact of endophytic microorganisms on plants, environment and humans. Sci World J. 2014;2014(1):250693. https://doi.org/10.1155/2014/250693
  27. 27. Zeffa DM, Fantin LH, Koltun A, de Oliveira AL, Nunes MP, Canteri MG, et al. Effects of plant growth-promoting rhizobacteria on co-inoculation with Bradyrhizobium in soybean crop: A meta-analysis of studies from 1987 to 2018. Peer J. 2020;8:e7905. https://doi.org/10.7717/peerj.7905
  28. 28. Su L, Shen Z, Ruan Y, Tao C, Chao Y, Li R, et al. Isolation of antagonistic endophytes from banana roots against Meloidogyne javanica and their effects on soil nematode community. Front Microbiol. 2017;8:2070. https://doi.org/10.3389/fmicb.2017.02070
  29. 29. Fisher PJ, Petrini O, Sutton BC. A comparative study of fungal endophytes in leaves, xylem and bark of Eucalyptus in Australia and England. Sydowia. 1993;45(2):338-45.
  30. 30. Long SR. Genes and signals in the Rhizobium-legume symbiosis1. Plant Physiol. 2001;125(1):69-72. https://doi.org/10.1104/pp.125.1.69
  31. 31. Sawada H, Kuykendall LD, Young JM. Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol. 2003;49(3):155-79. https://doi.org/10.2323/jgam.49.155
  32. 32. Dhole A, Shelat H. Non-rhizobial endophytes in root nodules. MOJ Biol Med. 2018;3(1):1-2. https://doi.org/10.15406/mojbm.2018.03.00064
  33. 33. Trujillo ME, Willems A, Abril A, Planchuelo A-Ma, Rivas R, Ludena D, et al. Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol. 2005;71(3):1318-27. https://doi.org/10.1128/AEM.71.3.1318-1327.2005
  34. 34. Sy A, Giraud E, Jourand P, Garcia N, Willems A, De Lajudie P, et al. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol. 2001;183(1):214-20. https://doi.org/10.1128/JB.183.1.214-220.2001
  35. 35. Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, et al. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol. 2012;62(Pt_11):2579-88. https://doi.org/10.1099/ijs.0.035097-0
  36. 36. Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, De Lajudie P. Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol. 2006;51:375-93. https://doi.org/10.1007/s00248-006-9025-0
  37. 37. Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, et al. Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol. 2003;26(1):47-53. https://doi.org/10.1078/072320203322337308
  38. 38. Chen W-M, Laevens S, Lee T-M, Coenye T, De Vos P, Mergeay M, et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol. 2001;51(5):1729-35. https://doi.org/10.1099/00207713-51-5-1729
  39. 39. Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, et al. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol. 2001;28(9):845-70. https://doi.org/10.1071/PP01069
  40. 40. Lupwayi NZ, Clayton GW, Hanson KG, Rice WA, Biederbeck VO. Endophytic rhizobia in barley, wheat and canola roots. Can J Plant Sci. 2004;84(1):37-45. https://doi.org/10.4141/P03-087
  41. 41. Potshangbam M, Devi SI, Sahoo D, Strobel GA. Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microbiol. 2017;8:325. https://doi.org/10.3389/fmicb.2017.00325
  42. 42. Fahde S, Boughribil S, Sijilmassi B, Amri A. Rhizobia: A promising source of plant growth-promoting molecules and their non-legume interactions: Examining applications and mechanisms. Agriculture. 2023;13(7):1279. https://doi.org/10.3390/agriculture13071279
  43. 43. Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG. Rhizobial inoculation influences seedling vigor and yield of rice. Agron J. 2000;92(5):880-86. https://doi.org/10.2134/agronj2000.925880x
  44. 44. Hardoim PR, van Overbeek LS, van Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008;16(10):463-71. https://doi.org/10.1016/j.tim.2008.07.008
  45. 45. De Meyer SE, De Beuf K, Vekeman B, Willems A. A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biol Biochem. 2015;83:1-11. https://doi.org/10.1016/j.soilbio.2015.01.002
  46. 46. Vandamme P, Goris J, Chen W-M, de Vos P, Willems A. Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol. 2002;25(4):507-12. https://doi.org/10.1078/07232020260517634
  47. 47. Srt R, Thangappan S, Uthandi S. Non-rhizobial nodule associated bacteria (NAB) from blackgram (Vigna mungo L.) and their possible role in plant growth promotion. Madras Agric J. 2019;451-459. https://doi.org/10.29321/MAJ.2019.000291
  48. 48. Valverde A, Velázquez E, Gutiérrez C, Cervantes E, Ventosa A, Igual J-M. Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol. 2003;53(6):1979-83. https://doi.org/10.1099/ijs.0.02677-0
  49. 49. Xu L, Zhang Y, Wang L, Chen W, Wei G. Diversity of endophytic bacteria associated with nodules of two indigenous legumes at different altitudes of the Qilian Mountains in China. Syst Appl Microbiol. 2014;37(6):457-65. https://doi.org/10.1016/j.syapm.2014.05.009
  50. 50. Dhole A, Shelat H, Vyas R, Jhala Y, Bhange M. Endophytic occupation of legume root nodules by nifH-positive non-rhizobial bacteria and their efficacy in the groundnut (Arachis hypogaea). Ann Microbiol. 2016;66:1397-407. https://doi.org/10.1007/s13213-016-1227-1
  51. 51. Velázquez E, Martínez-Hidalgo P, Carro L, Alonso P, Peix A, Trujillo ME, et al. Nodular endophytes: An untapped diversity. In: González MB, González-López J, editors. Beneficial Plant–Microbial Interactions. Boca Raton (FL): Taylor & Francis/CRC Press; p. 214–236.
  52. 52. Zaheer A, Mirza BS, Mclean JE, Yasmin S, Shah TM, Malik KA, et al. Association of plant growth-promoting Serratia spp. with the root nodules of chickpea. Res Microbiol. 2016;167(6):510-20. https://doi.org/10.1016/j.resmic.2016.04.001
  53. 53. Dhole A, Shelat H. Non-rhizobial endophytes associated with nodules of Vigna radiata L. and their combined activity with Rhizobium sp. Curr Microbiol. 2022;79(4):103. https://doi.org/10.1007/s00284-022-02792-x
  54. 54. Pandya M, Rajput M, Rajkumar S. Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology. 2015;84:80-89. https://doi.org/10.1134/S0026261715010105
  55. 55. Mushtaq S, Shafiq M, Tariq MR, Sami A, Nawaz-ul-Rehman MS, Bhatti MHT, et al. Interaction between bacterial endophytes and host plants. Front Plant Sci. 2023;13:1092105. https://doi.org/10.3389/fpls.2022.1092105
  56. 56. Debnath S, Chakraborty S, Langthasa M, Choure K, Agnihotri V, Srivastava A, et al. Non-rhizobial nodule endophytes improve nodulation, change root exudation pattern and promote the growth of lentil, for prospective application in fallow soil. Front Plant Sci. 2023;14:1152875. https://doi.org/10.3389/fpls.2023.1152875
  57. 57. White JF, Kingsley KL, Verma SK, Kowalski KP. Rhizophagy cycle: An oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms. 2018;6(3):95. https://doi.org/10.3390/microorganisms6030095
  58. 58. Verma SK, Sahu PK, Kumar K, Pal G, Gond SK, Kharwar RN, et al. Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. J Appl Microbiol. 2021;131(5):2161-77. https://doi.org/10.1111/jam.15111
  59. 59. Carvalho TLG, Balsemão-Pires E, Saraiva RM, Ferreira PCG, Hemerly AS. Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot. 2014;65(19):5631-42. https://doi.org/10.1093/jxb/eru319
  60. 60. Saddique MAB, Ali Z, Khan AS, Rana IA, Shamsi IH. Inoculation with the endophyte Piriformospora indica significantly affects mechanisms involved in osmotic stress in rice. Rice. 2018;11(1):34. https://doi.org/10.1186/s12284-018-0226-1
  61. 61. Christian N, Herre EA, Clay K. Foliar endophytic fungi alter patterns of nitrogen uptake and distribution in Theobroma cacao. New Phytol. 2019;222(3):1573-83. https://doi.org/10.1111/nph.15693
  62. 62. Buckley H, Young CA, Charlton ND, Hendricks WQ, Haley B, Nagabhyru P, et al. Leaf endophytes mediate fertilizer effects on plant yield and traits in northern oat grass (Trisetum spicatum). Plant Soil. 2019;434:425-40. https://doi.org/10.1007/s11104-018-3848-6
  63. 63. Boddey RM, Urquiaga S, Alves BJR, Reis V. Endophytic nitrogen fixation in sugarcane: Present knowledge and future applications. Plant Soil. 2003;252(1):139-49. https://doi.org/10.1023/A:1024152126541
  64. 64. Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N, et al. Endophytic microbes: Biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie van Leeuwenhoek. 2020;113:1075-107. https://doi.org/10.1007/s10482-020-01429-y
  65. 65. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L. Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech. 2015;5(4):355-77. https://doi.org/10.1007/s13205-014-0241-x
  66. 66. do Vale Barreto Figueiredo M, do Espírito Santo Mergulhão AC, Sobral JK, de Andrade Lira Junior M, de Araújo ASF. Biological nitrogen fixation: Importance, associated diversity, and estimates. In: Arora NK, editor. Plant Microbe Symbiosis: Fundamentals and Advances. New Delhi: Springer; 2013. p. 267–89. https://doi.org/10.1007/978-81-322-1287-4_10
  67. 67. Kaur T, Devi R, Kumar S, Sheikh I, Kour D, Yadav AN. Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley (Hordeum vulgare L.). Heliyon. 2022;8(4):e09326. https://doi.org/10.1016/j.heliyon.2022.e09326
  68. 68. Peoples MB, Craswell ET. Biological nitrogen fixation: Investments, expectations and actual contributions to agriculture. Plant Soil. 1992;141(1):13-39. https://doi.org/10.1007/BF00011308
  69. 69. Araújo AEDS, Baldani VLD, Galisa PDS, Pereira JA, Baldani JI. Response of traditional upland rice varieties to inoculation with selected diazotrophic bacteria isolated from rice cropped at the Northeast region of Brazil. Appl Soil Ecol. 2013;64:49-55. https://doi.org/10.1016/j.apsoil.2012.10.004
  70. 70. Ji SH, Gururani MA, Chun S-C. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res. 2014;169(1):83-98. https://doi.org/10.1016/j.micres.2013.06.003
  71. 71. Rangjaroen C, Rerkasem B, Teaumroong N, Noisangiam R, Lumyong S. Promoting plant growth in a commercial rice cultivar by endophytic diazotrophic bacteria isolated from rice landraces. Ann Microbiol. 2015;65(1):253-66. https://doi.org/10.1007/s13213-014-0857-4
  72. 72. Adhikari P, Pandey A. Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots. Rhizosphere. 2019;9:2-9. https://doi.org/10.1016/j.rhisph.2018.11.002
  73. 73. Matos AD, Gomes IC, Nietsche S, Xavier AA, Gomes WS, Dos Santos JA Neto, et al. Phosphate solubilization by endophytic bacteria isolated from banana trees. An Acad Bras Ciênc. 2017;89(04):2945-54. https://doi.org/10.1590/0001-3765201720160111
  74. 74. Varga T, Hixson KK, Ahkami AH, Sher AW, Barnes ME, Chu RK, et al. Endophyte-promoted phosphorus solubilization in Populus. Front Plant Sci. 2020;11:567918. https://doi.org/10.3389/fpls.2020.567918
  75. 75. Baghel V, Thakur JK, Yadav SS, Manna MC, Mandal A, Shirale AO, et al. Phosphorus and potassium solubilization from rock minerals by endophytic Burkholderia sp. strain FDN2-1 in soil and shift in diversity of bacterial endophytes of corn root tissue with crop growth stage. Geomicrobiol J. 2020;37:550-63. https://doi.org/10.1080/01490451.2020.1734691
  76. 76. Lucero CT, Lorda GS, Anzuay MS, Ludueña LM, Taurian T. Peanut endophytic phosphate solubilizing bacteria increase growth and P content of soybean and maize plants. Curr Microbiol. 2021;78:1961-72. https://doi.org/10.1007/s00284-021-02469-x
  77. 77. Rivas R, Peix A, Mateos P, Trujillo M, Martínez-Molina E, Velázquez E. Biodiversity of populations of phosphate-solubilizing rhizobia that nodulate chickpea in different Spanish soils. In: Velázquez E, Rodríguez-Barrueco C, editors. First International Meeting on Microbial Phosphate Solubilization. Developments in Plant and Soil Sciences. Dordrecht: Springer; 2007. p. 23-33. https://doi.org/10.1007/978-1-4020-5765-6_3
  78. 78. Purushotham N, Jones E, Monk J, Ridgway H. Community structure of endophytic actinobacteria in a New Zealand native medicinal plant Pseudowintera colorata (Horopito) and their influence on plant growth. Microb Ecol. 2018;76(3):729-40. https://doi.org/10.1007/s00248-018-1153-9
  79. 79. Don NT, Diep CN. Isolation, characterization and identification of phosphate-and potassium solubilizing bacteria from weathered materials of granite rock mountain, That Son, An Giang province, Vietnam. Am J Life Sci. 2014;2(5):282-91. https://doi.org/10.11648/j.ajls.20140205.16
  80. 80. Azizah H, Rahajeng SM, Jatmiko YD. Isolation and screening of phosphate and potassium solubilizing endophytic bacteria in maize (Zea mays L.). J Exp Life Sci. 2020;10(3):165-70. https://doi.org/10.21776/ub.jels.2020.010.03.04
  81. 81. Yuan Z-S, Liu F, Zhang G-F. Characteristics and biodiversity of endophytic phosphorus-and potassium-solubilizing bacteria in Moso Bamboo (Phyllostachys edulis). Acta Biol Hung. 2015;66:449-59. https://doi.org/10.1556/018.66.2015.4.9
  82. 82. Warzatullisna W, Fitri L, Ismail YS. Potential of endophytic bacteria from rice root as potassium solvent. Biodiversitas. 2019;20(5):1303-308.
  83. 83. Fiuza DAF, Vitorino LC, Souchie EL, Neto MR, Bessa LA, da Silva CF, et al. Effect of rhizobacteria inoculation via soil and seeds on Glycine max L. plants grown on soils with different cropping history. Microorganisms. 2022;10(4):691. https://doi.org/10.3390/microorganisms10040691
  84. 84. Waqas M, Khan AL, Kamran M, Hamayun M, Kang S-M, Kim YH, et al. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules. 2012;17(9):10754-73. https://doi.org/10.3390/molecules170910754
  85. 85. Singh RK, Singh P, Sharma A, Guo D-J, Upadhyay SK, Song Q-Q, et al. Unraveling nitrogen fixing potential of endophytic diazotrophs of different Saccharum species for sustainable sugarcane growth. Int J Mol Sci. 2022;23(11):6242. https://doi.org/10.3390/ijms23116242
  86. 86. Vincze É-B, Becze A, Laslo É, Mara G. Beneficial soil microbiomes and their potential role in plant growth and soil fertility. Agriculture. 2024;14(1):152. https://doi.org/10.3390/agriculture14010152
  87. 87. Reis MNO, Vitorino LC, Lourenço LL, Bessa LA. Microbial inoculation improves growth, nutritional and physiological aspects of Glycine max (L.) Merr. Microorganisms. 2022;10(7):1386. https://doi.org/10.3390/microorganisms10071386
  88. 88. Anandham R, Sridar R, Nalayini P, Poonguzhali S, Madhaiyan M, sa T. Potential for plant growth promotion in groundnut (Arachis hypogaea L.) cv. ALR-2 by co-inoculation of sulfur-oxidizing bacteria and Rhizobium. Microbiol Res. 2007;162(2):139-53. https://doi.org/10.1016/j.micres.2006.02.005
  89. 89. Cui L, Guo F, Zhang J, Yang S, Meng J, Geng Y, et al. Synergy of arbuscular mycorrhizal symbiosis and exogenous Ca2+ benefits peanut (Arachis hypogaea L.) growth through the shared hormone and flavonoid pathway. Sci Rep. 2019;9(1):16281. https://doi.org/10.1038/s41598-019-52630-7
  90. 90. Prasad D, Verma N, Bakshi M, Narayan OP, Singh AK, Dua M, Johro AK. Functional characterization of a magnesium transporter of root endophytic fungus Piriformospora indica. Front Microbiol. 2019;9:3231. https://doi.org/10.3389/fmicb.2018.03231
  91. 91. Johnstone TC, Nolan EM. Beyond iron: Non-classical biological functions of bacterial siderophores. Dalton Trans. 2015;44(14):6320-39. https://doi.org/10.1039/C4DT03559C
  92. 92. Sharma N, Varma A. Role of endophytic fungus Piriformospora indica in nutrient acquisition and plant health. In: Shrivastava N, Mahajan S, Varma A, editors. Symbiotic Soil Microorganisms: Biology and Applications. Soil Biology. Cham: Springer International Publishing. 2021:161-69. https://doi.org/10.1007/978-3-030-51916-2_10
  93. 93. Sharma A, Johri BN, Sharma AK, Glick BR. Plant growthpromoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem. 2003;35(7):887-94. https://doi.org/10.1016/S0038-0717(03)00119-6
  94. 94. Vishwakarma K, Kumar N, Shandilya C, Varma A. Unravelling the role of endophytes in micronutrient uptake and enhanced crop productivity. In: Shrivastava N, Mahajan S, Varma A, editors. Symbiotic Soil Microorganisms: Biology and Applications. Soil Biology. Cham: Springer International Publishing; 2021. p. 63–85. https://doi.org/10.1007/978-3-030-51916-2_4
  95. 95. Segaran G, Sathiavelu M. Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. Biocatal Agric Biotechnol. 2019;21:101284. https://doi.org/10.1016/j.bcab.2019.101284
  96. 96. Pavithra G, Bindal S, Rana M, Srivastava S. Role of endophytic microbes against plant pathogens: A review. Asian J Plant Sci. 2020;19(1):54-62. https://doi.org/10.3923/ajps.2020.54.62
  97. 97. Anjum MZ, Ghazanfar MU, Hussain I. Bio-efficacy of Trichoderma isolates and Bacillus subtilis against root rot of muskmelon Cucumis melo L. caused by Phytophthora drechsleri under controlled and field conditions. Pak J Bot. 2019;51(5):1877-82. https://doi.org/10.30848/PJB2019-5(13)
  98. 98. De Silva NI, Brooks S, Lumyong S, Hyde KD. Use of endophytes as biocontrol agents. Fungal Biol Rev. 2019;33(2):133-48. https://doi.org/10.1016/j.fbr.2018.10.001
  99. 99. Agrios GN. Plant Pathology. 5th ed. Amsterdam: Elsevier; 2005.
  100. 100. Cui W, He P, Munir S, He P, He Y, Li X, et al. Biocontrol of soft rot of Chinese cabbage using an endophytic bacterial strain. Front Microbiol. 2019;10:1471. https://doi.org/10.3389/fmicb.2019.01471
  101. 101. Arab YA, Abd-El-Rahman TG, Eisa N-jMM. Introducing an endophyte for controlling tomato early blight disease. J Plant Prot Pathol. 2009;34(6):6835-42. https://doi.org/10.21608/jppp.2009.208768
  102. 102. Sapak Z, Meon S, Ahmad ZAM. Effect of endophytic bacteria on growth and suppression of Ganoderma infection in oil palm. Int J Agri Biol. 2008;10:127-132.
  103. 103. Niere BI, Speijer PR, Sikora RA. A novel approach to the biological control of banana nematodes. In: Deutscher Tropentag 1999 in Berlin Session: Sustainable Technology Development in Crop Production; 1999.
  104. 104. Pocasangre L, Sikora RA, Vilich V, Schuster RP. Survey of banana endophytic fungi from Central America and screening for biological control of Radopholus similis. Acta Hortic. 2000;531:283-90. https://doi.org/10.17660/ActaHortic.2000.531.47
  105. 105. Venugopalan A, Srivastava S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv. 2015;33(6):873-87. https://doi.org/10.1016/j.biotechadv.2015.07.004
  106. 106. Abdalla MA, Matasyoh JC. Endophytes as producers of peptides: An overview about the recently discovered peptides from endophytic microbes. Nat Prod Bioprospect. 2014;4:257-70. https://doi.org/10.1007/s13659-014-0038-y
  107. 107. Mishra S, Sahu PK, Agarwal V, Singh N. Exploiting endophytic microbes as micro-factories for plant secondary metabolite production. Appl Microbiol Biotechnol. 2021;105(18):6579-96. https://doi.org/10.1007/s00253-021-11527-0
  108. 108. Gouda S, Das G, Sen SK, Shin H-S, Patra JK. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front Microbiol. 2016;7. https://doi.org/10.3389/fmicb.2016.01538
  109. 109. Kusari P, Kusari S, Spiteller M, Kayser O. Endophytic fungi harbored in Cannabis sativa L.: Diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers. 2013;60(1):137-51. https://doi.org/10.1007/s13225-012-0216-3
  110. 110. Carroll GC. Beyond pest deterrence-Alternative strategies and hidden costs of endophytic mutualisms in vascular plants. In: Andrews JH, Hirano SS, editors. Microbial Ecology of Leaves. Brock/Springer Series in Contemporary Bioscience. New York (NY): Springer; 1991. p. 358–75. https://doi.org/10.1007/978-1-4612-3168-4_18
  111. 111. Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, et al. Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci. 2003;100(26):15649-54. https://doi.org/10.1073/pnas.2533483100
  112. 112. Fadiji AE, Babalola OO. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front Bioeng Biotechnol. 2020;8:467. https://doi.org/10.3389/fbioe.2020.00467
  113. 113. Li Y-C, Tao W-Y. Effects of paclitaxel-producing fungal endophytes on growth and paclitaxel formation of Taxus cuspidata cells. Plant Growth Regul. 2009;58:97-105. https://doi.org/10.1007/s10725-008-9355-7
  114. 114. Khan AR, Ullah I, Waqas M, Shahzad R, Hong S-J, Park G-S, et al. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol. 2015;31(9):1461-66. https://doi.org/10.1007/s11274-015-1888-0
  115. 115. Khan SA, Hamayun M, Yoon H, Kim H-Y, Suh S-J, Hwang S-K, et al. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 2008;8:231. https://doi.org/10.1186/1471-2180-8-231
  116. 116. Hamayun M, Khan SA, Khan AL, Rehman G, Kim Y-H, Iqbal I, et al. Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia. 2010;102(5):989-95. https://doi.org/10.3852/09-261
  117. 117. Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H, et al. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbio. 2012;12:3. https://doi.org/10.1186/1471-2180-12-3
  118. 118. Baron NC, de Souza Pollo A, Rigobelo EC. Purpureocillium lilacinum and Metarhizium marquandii as plant growth-promoting fungi. Peer J. 2020;8:e9005. https://doi.org/10.7717/peerj.9005

Downloads

Download data is not yet available.